Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2768 Janelia Publications

Showing 1941-1950 of 2768 results
03/26/18 | Photoactivatable drugs for nicotinic optopharmacology.
Banala S, Arvin MC, Bannon NM, Jin X, Macklin JJ, Wang Y, Peng C, Zhao G, Marshall JJ, Gee KR, Wokosin DL, Kim VJ, McIntosh JM, Contractor A, Lester HA, Kozorovitskiy Y, Drenan RM, Lavis LD
Nature Methods. 2018 Mar 26;15(5):347-50. doi: 10.1038/nmeth.4637

Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales.

View Publication Page
12/01/08 | Photoactivated localization microscopy (PALM) of adhesion complexes. (With commentary)
Shroff H, White H, Betzig E
Current Protocols in Cell Biology. 2008 Dec;Chapter 4(Unit 4):21. doi: 10.1002/0471143030.cb0421s41

Key to understanding a protein’s biological function is the accurate determination of its spatial distribution inside a cell. Although fluorescent protein markers allow the targeting of specific proteins with molecular precision, much of this information is lost when the resultant fusion proteins are imaged with conventional, diffraction-limited optics. In response, several imaging modalities that are capable of resolution below the diffraction limit (approximately 200 nm) have emerged. Here, both single- and dual-color superresolution imaging of biological structures using photoactivated localization microscopy (PALM) are described. The examples discussed focus on adhesion complexes: dense, protein-filled assemblies that form at the interface between cells and their substrata. A particular emphasis is placed on the instrumentation and photoactivatable fluorescent protein (PA-FP) tags necessary to achieve PALM images at approximately 20 nm resolution in 5 to 30 min in fixed cells.

Commentary: A paper spearheaded by Hari which gives a thorough description of the methods and hardware needed to successfully practice PALM, including cover slip preparation, cell transfection and fixation, drift correction with fiducials, characterization of on/off contrast ratios for different photoactivted fluorescent proteins, identifying PALM-suitable cells, and mechanical and optical components of a PALM system.

View Publication Page
Singer Lab
10/23/14 | Photoswitchable red fluorescent protein with a large stokes shift.
Piatkevich KD, English BP, Malashkevich VN, Xiao H, Almo SC, Singer RH, Verkhusha VV
Chemistry & Biology. 2014 Oct 23;21(10):1402-14. doi: 10.1016/j.chembiol.2014.08.010

A subclass of fluorescent proteins (FPs), large Stokes shift (LSS) FP, are characterized by increased spread between excitation and emission maxima. We report a photoswitchable variant of a red FP with an LSS, PSLSSmKate, which initially exhibits excitation and emission at 445 and 622 nm, but violet irradiation photoswitches PSLSSmKate into a common red form with excitation and emission at 573 and 621 nm. We characterize spectral, photophysical, and biochemical properties of PSLSSmKate in vitro and in mammalian cells and determine its crystal structure in the LSS form. Mass spectrometry, mutagenesis, and spectroscopy of PSLSSmKate allow us to propose molecular mechanisms for the LSS, pH dependence, and light-induced chromophore transformation. We demonstrate the applicability of PSLSSmKate to superresolution photoactivated localization microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects.

View Publication Page
Grigorieff Lab
02/16/18 | Physical basis of amyloid fibril polymorphism.
Close W, Neumann M, Schmidt A, Hora M, Annamalai K, Schmidt M, Reif B, Schmidt V, Grigorieff N, Fändrich M
Nature Communications. 2018 Feb 16;9(1):699. doi: 10.1038/s41467-018-03164-5

Polymorphism is a key feature of amyloid fibril structures but it remains challenging to explain these variations for a particular sample. Here, we report electron cryomicroscopy-based reconstructions from different fibril morphologies formed by a peptide fragment from an amyloidogenic immunoglobulin light chain. The observed fibril morphologies vary in the number and cross-sectional arrangement of a structurally conserved building block. A comparison with the theoretically possible constellations reveals the experimentally observed spectrum of fibril morphologies to be governed by opposing sets of forces that primarily arise from the β-sheet twist, as well as peptide-peptide interactions within the fibril cross-section. Our results provide a framework for rationalizing and predicting the structure and polymorphism of cross-β fibrils, and suggest that a small number of physical parameters control the observed fibril architectures.

View Publication Page
07/15/23 | Pinpoint: trajectory planning for multi-probe electrophysiology and injections in an interactive web-based 3D environment
Daniel Birman , Kenneth J. Yang , Steven J. West , Bill Karsh , Yoni Browning , the International Brain Laboratory , Joshua H. Siegle , Nicholas A. Steinmetz
bioRxiv. 2023 Jul 15:. doi: 10.1101/2023.07.14.548952

Targeting deep brain structures during electrophysiology and injections requires intensive training and expertise. Even with experience, researchers often can't be certain that a probe is placed precisely in a target location and this complexity scales with the number of simultaneous probes used in an experiment. Here, we present Pinpoint, open-source software that allows for interactive exploration of stereotaxic insertion plans. Once an insertion plan is created, Pinpoint allows users to save these online and share them with collaborators. 3D modeling tools allow users to explore their insertions alongside rig and implant hardware and ensure plans are physically possible. Probes in Pinpoint can be linked to electronic micro-manipulators allowing real-time visualization of current brain region targets alongside neural data. In addition, Pinpoint can control manipulators to automate and parallelize the insertion process. Compared to previously available software, Pinpoint's easy access through web browsers, extensive features, and real-time experiment integration enable more efficient and reproducible recordings.

View Publication Page
07/30/25 | Place-cell heterogeneity underlies power-laws in hippocampal activity
John J. Briguglio , Jaesung Lee , Albert K. Lee , Vincent Hakim , Sandro Romani
arXiv. 2025 Jul 30:. doi: 10.48550/arXiv.2507.23030

Power-law scaling in coarse-grained data suggests critical dynamics, but the true source of this scaling often remains unclear. Here, we analyze neural activity recorded during spatial navigation, reproducing power-law scaling under a phenomenological renormalization group (PRG) procedure that clusters units by activity similarity. Such scaling was previously linked to criticality. Here, we show that the iterative nature of the procedure itself leads to the emergence of power laws when applied to heterogeneous, non-interacting units obeying spatially structured activity without requiring critical interactions. Furthermore, the scaling exponents produced by heteregeneous non-interacting units match the observed exponents in recorded neural data. A simplified version of the PRG further reveals how heterogeneity smooths transitions across scales, mimicking critical behavior. The resulting exponents depend systematically on system and population size, predictions confirmed by subsampling the data.

 

View Publication Page
01/29/09 | Plasticity of burst firing induced by synergistic activation of metabotropic glutamate and acetylcholine receptors.
Moore SJ, Cooper DC, Spruston N
Neuron. 2009 Jan 29;61(2):287-300. doi: 10.1016/j.neuron.2008.12.013

Subiculum, the primary efferent pathway of hippocampus, participates in memory for spatial tasks, relapse to drug abuse, and temporal lobe seizures. Subicular pyramidal neurons exhibit low-threshold burst firing driven by a spike afterdepolarization. Here we report that burst firing can be regulated by stimulation of afferent projections to subiculum. Unlike synaptic plasticity, burst plasticity did not require synaptic depolarization, activation of AMPA or NMDA receptors, or action potential firing. Rather, enhancement of burst firing required synergistic activation of group I, subtype 1 metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors (mAChR). When either of these receptors was blocked, a suppression of bursting was revealed, which in turn was blocked by antagonists of group I, subtype 5 mGluRs. These results indicate that the output of subiculum can be strongly and bidirectionally regulated by activation of glutamatergic inputs within the hippocampus and cholinergic afferents from the medial septum.

View Publication Page
10/08/15 | Plasticity-driven individualization of olfactory coding in mushroom body output neurons.
Hige T, Aso Y, Rubin GM, Turner GC
Nature. 2015 Oct 8;526(7572):258-62. doi: 10.1038/nature15396

Although all sensory circuits ascend to higher brain areas where stimuli are represented in sparse, stimulus-specific activity patterns, relatively little is known about sensory coding on the descending side of neural circuits, as a network converges. In insects, mushroom bodies have been an important model system for studying sparse coding in the olfactory system, where this format is important for accurate memory formation. In Drosophila, it has recently been shown that the 2,000 Kenyon cells of the mushroom body converge onto a population of only 34 mushroom body output neurons (MBONs), which fall into 21 anatomically distinct cell types. Here we provide the first, to our knowledge, comprehensive view of olfactory representations at the fourth layer of the circuit, where we find a clear transition in the principles of sensory coding. We show that MBON tuning curves are highly correlated with one another. This is in sharp contrast to the process of progressive decorrelation of tuning in the earlier layers of the circuit. Instead, at the population level, odour representations are reformatted so that positive and negative correlations arise between representations of different odours. At the single-cell level, we show that uniquely identifiable MBONs display profoundly different tuning across different animals, but that tuning of the same neuron across the two hemispheres of an individual fly was nearly identical. Thus, individualized coordination of tuning arises at this level of the olfactory circuit. Furthermore, we find that this individualization is an active process that requires a learning-related gene, rutabaga. Ultimately, neural circuits have to flexibly map highly stimulus-specific information in sparse layers onto a limited number of different motor outputs. The reformatting of sensory representations we observe here may mark the beginning of this sensory-motor transition in the olfactory system.

View Publication Page
05/29/22 | Plasticity-induced actin polymerization in the dendritic shaft regulates intracellular AMPA receptor trafficking.
V. C. Wong , P.R. Houlihan , H. Liu , D. Walpita , M.C. DeSantis , Z. Liu , E. K. O’Shea
bioRxiv. 2022 May 29:. doi: 10.1101/2022.05.29.493906

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing long-term potentiation (LTP) to increase synaptic transmission, but how AMPAR-containing vesicles are selectively trafficked to these synapses during LTP is not known. Here we developed a strategy to label AMPAR GluA1 subunits expressed from the endogenous loci of rat hippocampal neurons such that the motion of GluA1-containing vesicles in time-lapse sequences can be characterized using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of neuronal activity.

View Publication Page
08/15/24 | Plasticity-induced actin polymerization in the dendritic shaft regulates intracellular AMPA receptor trafficking.
Wong VC, Houlihan PR, Liu H, Walpita D, DeSantis MC, Liu Z, O'Shea EK
Elife. 2024 Aug 15;13:. doi: 10.7554/eLife.80622

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.

View Publication Page