Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-BfUTt7484DSUmejmGh6NWRUlV0BgbVWM | block
facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block
general_search_page-panel_pane_1 | views_panes

23 Results

Showing 1-10 of 23 results
Your Criteria:
    Publications
    09/01/22 | A serotonergic axon-cilium synapse drives nuclear signaling to maintain chromatin accessibility
    Shu-Hsien Sheu , Srigokul Upadhyayula , Vincent Dupuy , Song Pang , Andrew L. Lemire , Deepika Walpita , H. Amalia Pasolli , Fei Deng , Jinxia Wan , Lihua Wang , Justin Houser , Silvia Sanchez-Martinez , Sebastian E. Brauchi , Sambashiva Banala , Melanie Freeman , C. Shan Xu , Tom Kirchhausen , Harald F. Hess , Luke Lavis , Yu-Long Li , Séverine Chaumont-Dubel , David E. Clapham
    Cell. 2022 Sep 01;185(18):3390-3407. doi: 10.1016/j.cell.2022.07.026

    Chemical synapses between axons and dendrites mediate much of the brain’s intercellular communication. Here we describe a new kind of synapse – the axo-ciliary synapse - between axons and primary cilia. By employing enhanced focused ion beam – scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between the serotonergic axons arising from the brainstem, and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, 5-hydroxytryptamine receptor 6 (HTR6), whose mutation is associated with learning and memory defects. Using a newly developed cilia-targeted serotonin sensor, we show that optogenetic stimulation of serotonergic axons results in serotonin release onto cilia. Ciliary HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway. Ablation of this pathway results in nuclear actin and chromatin accessibility changes in CA1 pyramidal neurons. Axo-ciliary synapses serve as a distinct mechanism for neuromodulators to program neuron transcription through privileged access to the nuclear compartment.

    View Publication Page
    People
    Alex Miller
    Visiting Scientist
    People
    Corey Valinsky
    Research Scientist
    Publications
    01/18/19 | Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution.
    Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE, Liu T, Singh V, Graves AR, Huynh GH, Zhao Y, Bogovic JA, Colonell J, Ott CM, Zugates CT, Tappan S, Rodriguez A, Mosaliganti KR, Sheu S, Pasolli HA, et al
    Science (New York, N.Y.). 2019 Jan 18;363(6424):eaau8302. doi: 10.1126/science.aau8302

    Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain. These included synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.

    View Publication Page
    Publications
    07/13/18 | Cryo-EM structure of the polycystin 2-l1 ion channel.
    Hulse RE, Li Z, Huang RK, Zhang J, Clapham DE
    eLife. 2018 Jul 13;7:. doi: 10.7554/eLife.36931

    We report the near atomic resolution (3.3 Å) of the human polycystic kidney disease 2-like 1 (polycystin 2-l1) ion channel. Encoded by PKD2L1, polycystin 2-l1 is a calcium and monovalent cation-permeant ion channel in primary cilia and plasma membranes. The related primary cilium-specific polycystin-2 protein, encoded by PKD2, shares a high degree of sequence similarity, yet has distinct permeability characteristics. Here we show that these differences are reflected in the architecture of polycystin 2-l1.

    View Publication Page
    Publications
    11/11/18 | Cryo-EM structure of the receptor-activated TRPC5 ion channel at 2.9 angstrom resolution.
    Jingjing Duan , Jian Li , Gui-Lan Chen , Bo Zeng , Kechen Xie , Xiaogang Peng , Wei Zhou , Jianing Zhong , Yixing Zhang , Jie Xu , Changhu Xue , Lan Zhu , Wei Liu , Xiao-Li Tian , Jianbin Wang , David E. Clapham , Zongli Li , Jin Zhang

    The transient receptor potential canonical subfamily member 5 (TRPC5) is a non-selective calcium-permeant cation channel. As a depolarizing channel, its function is studied in the central nervous system and kidney. TRPC5 forms heteromultimers with TRPC1, but also forms homomultimers. It can be activated by reducing agents through reduction of the extracellular disulfide bond. Here we present the 2.9 Å resolution electron cryo-microscopy (cryo-EM) structure of TRPC5. The structure of TRPC5 in its apo state is partially open, which may be related to the weak activation of TRPC5 in response to extracellular pH. We also report the conserved negatively charged residues of the cation binding site located in the hydrophilic pocket between S2 and S3. Comparison of the TRPC5 structure to previously determined structures of other TRPC and TRP channels reveals differences in the extracellular pore domain and in the length of the S3 helix. Together, these results shed light on the structural features that contribute to the specific activation mechanism of the receptor-activated TRPC5.

    View Publication Page
    People
    Damien Alcor
    Research Specialist
    People
    David Clapham
    Senior Group Leader