Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

25 Results

Showing 1-10 of 25 results
Your Criteria:
    Publications
    12/01/20 | A programmable sequence of reporters for lineage analysis.
    Garcia-Marques J, Isabel Espinosa Medina , Ku K, Yang C, Koyama M, Yu H, Lee T
    Nature Neuroscience. 2020 Dec 01;23(12):1618-28. doi: 10.1038/s41593-020-0676-9

    We present CLADES (cell lineage access driven by an edition sequence), a technology for cell lineage studies based on CRISPR-Cas9 techniques. CLADES relies on a system of genetic switches to activate and inactivate reporter genes in a predetermined order. Targeting CLADES to progenitor cells allows the progeny to inherit a sequential cascade of reporters, thereby coupling birth order to reporter expression. This system, which can also be temporally induced by heat shock, enables the temporal resolution of lineage development and can therefore be used to deconstruct an extended cell lineage by tracking the reporters expressed in the progeny. When targeted to the germ line, the same cascade progresses across animal generations, predominantly marking each generation with the corresponding combination of reporters. CLADES therefore offers an innovative strategy for making programmable cascades of genes that can be used for genetic manipulation or to record serial biological events.

    View Publication Page
    People
    Andreas Mueller
    Visiting Postdoctoral Associate
    People
    Austin Seroka
    Visiting Scientist
    People
    Cecilia Moens
    Visiting Scientist
    Publications
    05/30/19 | CLADES: a programmable sequence of reporters for lineage analysis
    Garcia-Marques J, Yang C, Isabel Espinosa Medina , Koyama M, Lee T
    bioRxiv. 2019 May 30:. doi: https://doi.org/10.1101/655308

    We present CLADES (Cell Lineage Access Driven by an Edition Sequence), a technology for cell lineage studies based on CRISPR/Cas9. CLADES relies on a system of genetic switches to activate and inactivate reporter genes in a pre-determined order. Targeting CLADES to progenitor cells allows the progeny to inherit a sequential cascade of reporters, coupling birth order with reporter expression. This gives us temporal resolution of lineage development that can be used to deconstruct an extended cell lineage by tracking the reporters expressed in the progeny. When targeted to the germ line, the same cascade progresses across animal generations, marking each generation with the corresponding combination of reporters. CLADES thus offers an innovative strategy for making programmable cascades of genes that can be used for genetic manipulation or to record serial biological events.

    View Publication Page
    Publications
    07/29/20 | Dense reconstruction of elongated cell lineages: overcoming suboptimum lineage encoding and sparse cell sampling
    Sugino K, Miyares RL, Espinosa-Medina I, Chen H, Potter CJ, Lee T
    bioRxiv. 07/2020:. doi: 10.1101/2020.07.27.223321

    Acquiring both lineage and cell-type information during brain development could elucidate transcriptional programs underling neuronal diversification. This is now feasible with single-cell RNA-seq combined with CRISPR-based lineage tracing, which generates genetic barcodes with cumulative CRISPR edits. This technique has not yet been optimized to deliver high-resolution lineage reconstruction of protracted lineages. Drosophila neuronal lineages are an ideal model to consider, as multiple lineages have been morphologically mapped at single-cell resolution. Here we find the parameter ranges required to encode a representative neuronal lineage emanating from 100 stem cell divisions. We derive the optimum editing rate to be inversely proportional to lineage depth, enabling encoding to persist across lineage progression. Further, we experimentally determine the editing rates of a Cas9-deaminase in cycling neural stem cells, finding near ideal rates to map elongated Drosophila neuronal lineages. Moreover, we propose and evaluate strategies to separate recurring cell-types for lineage reconstruction. Finally, we present a simple method to combine multiple experiments, which permits dense reconstruction of protracted cell lineages despite suboptimum lineage encoding and sparse cell sampling.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    Publications
    01/03/25 | Design and Generation of TEMPO Reagents for Sequential Labeling and Manipulation of Vertebrate Cell Lineages.
    Espinosa-Medina I
    Methods Mol Biol. 01/2025;2886:327-353. doi: 10.1007/978-1-0716-4310-5_17

    During development, cells undergo a sequence of specification events to form functional tissues and organs. To investigate complex tissue development, it is crucial to visualize how cell lineages emerge and to be able to manipulate regulatory factors with temporal control. We recently developed TEMPO (Temporal Encoding and Manipulation in a Predefined Order), a genetic tool to label with different colors and genetically manipulate consecutive cell generations in vertebrates. TEMPO relies on CRISPR to activate a cascade of fluorescent proteins which can be imaged in vivo. Here, we explain the steps to design, generate, and express TEMPO constructs in zebrafish and mice.

    View Publication Page
    People
    Emilia Missing
    Lab Administration Coordinator
    Publications
    10/09/24 | Haploidy-linked cell proliferation defects limit larval growth in Zebrafish
    Kan Yaguchi , Daiki Saito , Triveni Menon , Akira Matsura , Takeomi Mizutani , Tomoya Kotani , Sreelaja Nair , Ryota Uehara
    Open Biol.. 2024 Oct 09;14(10):240126. doi: 10.1098/rsob.240126

    Haploid larvae in non-mammalian vertebrates are lethal, with characteristic organ growth retardation collectively called 'haploid syndrome'. In contrast to mammals, whose haploid intolerance is attributed to imprinting misregulation, the cellular principle of haploidy-linked defects in non-mammalian vertebrates remains unknown. Here, we investigated cellular defects that disrupt the ontogeny of gynogenetic haploid zebrafish larvae. Unlike diploid control larvae, haploid larvae manifested unscheduled cell death at the organogenesis stage, attributed to haploidy-linked p53 upregulation. Moreover, we found that haploid larvae specifically suffered the gradual aggravation of mitotic spindle monopolarization during 1-3 days post-fertilization, causing spindle assembly checkpoint-mediated mitotic arrest throughout the entire body. High-resolution imaging revealed that this mitotic defect accompanied the haploidy-linked centrosome loss occurring concomitantly with the gradual decrease in larval cell size. Either resolution of mitotic arrest or depletion of p53 partially improved organ growth in haploid larvae. Based on these results, we propose that haploidy-linked mitotic defects and cell death are parts of critical cellular causes shared among vertebrates that limit the larval growth in the haploid state, contributing to an evolutionary constraint on allowable ploidy status in the vertebrate life cycle.

    View Publication Page