Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Funke Lab / Publications
general_search_page-panel_pane_1 | views_panes

36 Publications

Showing 1-10 of 36 results
10/02/24 | A Drosophila computational brain model reveals sensorimotor processing.
Shiu PK, Sterne GR, Spiller N, Franconville R, Sandoval A, Zhou J, Simha N, Kang CH, Yu S, Kim JS, Dorkenwald S, Matsliah A, Schlegel P, Yu S, McKellar CE, Sterling A, Costa M, Eichler K, Bates AS, Eckstein N, Funke J, Jefferis GS, Murthy M, Bidaye SS, Hampel S, Seeds AM, Scott K
Nature. 2024 Oct 02;634(8032):210-219. doi: 10.1038/s41586-024-07763-9

The recent assembly of the adult Drosophila melanogaster central brain connectome, containing more than 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here we create a leaky integrate-and-fire computational model of the entire Drosophila brain, on the basis of neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviours. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. In addition, using the model to activate neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing-a testable hypothesis that we validate by optogenetic activation and behavioural studies. Activating different classes of gustatory neurons in the model makes accurate predictions of how several taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modelling brain circuits using only synapse-level connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can describe complete sensorimotor transformations.

View Publication Page
10/02/24 | Network statistics of the whole-brain connectome of Drosophila
Albert Lin , Runzhe Yang , Sven Dorkenwald , Arie Matsliah , Amy R. Sterling , Philipp Schlegel , Szi-chieh Yu , Claire E. McKellar , Marta Costa , Katharina Eichler , Alexander Shakeel Bates , Nils Eckstein , Jan Funke , Gregory S.X.E. Jefferis , Mala Murthy
Nature. 2024 Oct 02;634(8032):153–165. doi: 10.1038/s41586-024-07968-y

Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex (https://codex.flywire.ai) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.

View Publication Page
08/05/24 | DaCapo: a modular deep learning framework for scalable 3D image segmentation
Patton W, Rhoades JL, Zouinkhi M, Ackerman DG, Malin-Mayor C, Adjavon D, Heinrich L, Bennett D, Zubov Y, Team CP, Weigel A, Funke J
arXiv. 2024 Aug 05:. doi: 10.48550/arXiv.2408.02834

DaCapo is a specialized deep learning library tailored to expedite the training and application of existing machine learning approaches on large, near-isotropic image data. In this correspondence, we introduce DaCapo's unique features optimized for this specific domain, highlighting its modular structure, efficient experiment management tools, and scalable deployment capabilities. We discuss its potential to improve access to large-scale, isotropic image segmentation and invite the community to explore and contribute to this open-source initiative.

View Publication Page
05/09/24 | Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AK, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu S, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GS, Funke J
Cell. 2024 May 09;187(10):2574-2594.e23. doi: 10.1016/j.cell.2024.03.016

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.

View Publication Page
04/22/24 | A Bayesian Solution to Count the Number of Molecules within a Diffraction Limited Spot
Alexander Hillsley , Johannes Stein , Paul W. Tillberg , David L. Stern , Jan Funke
bioRxiv. 2024 Apr 22:. doi: 10.1101/2024.04.18.590066

We address the problem of inferring the number of independently blinking fluorescent light emitters, when only their combined intensity contributions can be observed at each timepoint. This problem occurs regularly in light microscopy of objects that are smaller than the diffraction limit, where one wishes to count the number of fluorescently labelled subunits. Our proposed solution directly models the photo-physics of the system, as well as the blinking kinetics of the fluorescent emitters as a fully differentiable hidden Markov model. Given a trace of intensity over time, our model jointly estimates the parameters of the intensity distribution per emitter, their blinking rates, as well as a posterior distribution of the total number of fluorescent emitters. We show that our model is consistently more accurate and increases the range of countable subunits by a factor of two compared to current state-of-the-art methods, which count based on autocorrelation and blinking frequency, Further-more, we demonstrate that our model can be used to investigate the effect of blinking kinetics on counting ability, and therefore can inform experimental conditions that will maximize counting accuracy.

View Publication Page
Turner LabFitzgerald LabFunke Lab
12/12/23 | Model-Based Inference of Synaptic Plasticity Rules
Yash Mehta , Danil Tyulmankov , Adithya E. Rajagopalan , Glenn C. Turner , James E. Fitzgerald , Jan Funke
bioRxiv. 2023 Dec 12:. doi: 10.1101/2023.12.11.571103

Understanding learning through synaptic plasticity rules in the brain is a grand challenge for neuroscience. Here we introduce a novel computational framework for inferring plasticity rules from experimental data on neural activity trajectories and behavioral learning dynamics. Our methodology parameterizes the plasticity function to provide theoretical interpretability and facilitate gradient-based optimization. For instance, we use Taylor series expansions or multilayer perceptrons to approximate plasticity rules, and we adjust their parameters via gradient descent over entire trajectories to closely match observed neural activity and behavioral data. Notably, our approach can learn intricate rules that induce long nonlinear time-dependencies, such as those incorporating postsynaptic activity and current synaptic weights. We validate our method through simulations, accurately recovering established rules, like Oja’s, as well as more complex hypothetical rules incorporating reward-modulated terms. We assess the resilience of our technique to noise and, as a tangible application, apply it to behavioral data from Drosophila during a probabilistic reward-learning experiment. Remarkably, we identify an active forgetting component of reward learning in flies that enhances the predictive accuracy of previous models. Overall, our modeling framework provides an exciting new avenue to elucidate the computational principles governing synaptic plasticity and learning in the brain.

View Publication Page
10/02/24 | Neuronal wiring diagram of an adult brain.
Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu S, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro M, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GS, Seung HS, Murthy M, FlyWire Consortium
Nature. 2024 Oct 02;634(8032):124-138. doi: 10.1038/s41586-024-07558-y

Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses between 139,255 neurons reconstructed from an adult female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.

View Publication Page
10/01/23 | Unsupervised Learning of Object-Centric Embeddings for Cell Instance Segmentation in Microscopy Images
Wolf S, Lalit M, McDole K, Funke J
2023 IEEE/CVF International Conference on Computer Vision (ICCV). 2023 Oct 01:. doi: 10.1109/ICCV51070.2023.01944

Segmentation of objects in microscopy images is required for many biomedical applications. We introduce object-centric embeddings (OCEs), which embed image patches such that the spatial offsets between patches cropped from the same object are preserved. Those learnt embeddings can be used to delineate individual objects and thus obtain instance segmentations. Here, we show theoretically that, under assumptions commonly found in microscopy images, OCEs can be learnt through a self-supervised task that predicts the spatial offset between image patches. Together, this forms an unsupervised cell instance segmentation method which we evaluate on nine diverse large-scale microscopy datasets. Segmentations obtained with our method lead to substantially improved results, compared to state-of-the-art baselines on six out of nine datasets, and perform on par on the remaining three datasets. If ground-truth annotations are available, our method serves as an excellent starting point for supervised training, reducing the required amount of ground-truth needed by one order of magnitude, thus substantially increasing the practical applicability of our method. Source code is available at github.com/funkelab/cellulus.

View Publication Page
07/22/23 | Towards Generalizable Organelle Segmentation in Volume Electron Microscopy.
Heinrich L, Patton W, Bennett D, Ackerman D, Park G, Bogovic JA, Eckstein N, Petruncio A, Clements J, Pang S, Shan Xu C, Funke J, Korff W, Hess H, Lippincott-Schwartz J, Saalfeld S, Weigel A, CellMap Project Team
Microscopy and Microanalysis. 2023 Jul 22;29(Supplement_1):975. doi: 10.1093/micmic/ozad067.487
07/19/24 | Neural-circuit basis of song preference learning in fruit flies
Keisuke Imoto , Yuki Ishikawa , Yoshinori Aso , Jan Funke , Ryoya Tanaka , Azusa Kamikouchi
iScience. 2024 Jul 19;27(7):. doi: 10.1016/j.isci.2024.110266

As observed in human language learning and song learning in birds, the fruit fly Drosophila melanogaster changes its auditory behaviors according to prior sound experiences. This phenomenon, known as song preference learning in flies, requires GABAergic input to pC1 neurons in the brain, with these neurons playing a key role in mating behavior. The neural circuit basis of this GABAergic input, however, is not known. Here, we find that GABAergic neurons expressing the sex-determination gene doublesex are necessary for song preference learning. In the brain, only four doublesex-expressing GABAergic neurons exist per hemibrain, identified as pCd-2 neurons. pCd-2 neurons directly, and in many cases mutually, connect with pC1 neurons, suggesting the existence of reciprocal circuits between them. Moreover, GABAergic and dopaminergic inputs to doublesex-expressing GABAergic neurons are necessary for song preference learning. Together, this study provides a neural circuit model that underlies experience-dependent auditory plasticity at a single-cell resolution.

View Publication Page