Filter
Associated Lab
- Aso Lab (2) Apply Aso Lab filter
- Card Lab (1) Apply Card Lab filter
- Cardona Lab (3) Apply Cardona Lab filter
- Dickson Lab (1) Apply Dickson Lab filter
- Espinosa Medina Lab (1) Apply Espinosa Medina Lab filter
- Feliciano Lab (1) Apply Feliciano Lab filter
- Fitzgerald Lab (1) Apply Fitzgerald Lab filter
- Funke Lab (37) Apply Funke Lab filter
- Hess Lab (5) Apply Hess Lab filter
- Keller Lab (2) Apply Keller Lab filter
- Lippincott-Schwartz Lab (2) Apply Lippincott-Schwartz Lab filter
- Reiser Lab (1) Apply Reiser Lab filter
- Rubin Lab (1) Apply Rubin Lab filter
- Saalfeld Lab (10) Apply Saalfeld Lab filter
- Scheffer Lab (1) Apply Scheffer Lab filter
- Stern Lab (1) Apply Stern Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
- Turaga Lab (5) Apply Turaga Lab filter
- Turner Lab (1) Apply Turner Lab filter
Associated Project Team
Publication Date
Type of Publication
37 Publications
Showing 21-30 of 37 resultsConnections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses between 139,255 neurons reconstructed from an adult female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.
View Publication PageHigh-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
View Publication PageMany animals use coordinated limb movements to interact with and navigate through the environment. To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to map synaptic connectivity within a neuronal network that controls limb movements. We present a synapse-resolution EM dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we reconstructed 507 motor neurons, including all those that control the legs and wings. We show that a specific class of leg sensory neurons directly synapse onto the largest-caliber motor neuron axons on both sides of the body, representing a unique feedback pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM data acquisition more accessible and affordable to the scientific community.
View Publication PageCellular heterogeneity within complex tissues and organs is essential to coordinate biological processes across biological scales. The effect of local cues and tissue microenvironments on cell heterogeneity has been mainly studied at the transcriptional level. However, it is within the subcellular scale - the organelles - that lays the machinery to conduct most metabolic reactions and maintain cells alive, ensuring proper tissue function. How changes in subcellular organization under different microenvironments define the functional diversity of cells within organs remains largely unexplored. Here we determine how organelles adapt to different microenvironments using the mouse liver as model system, in combination with computational approaches and machine-learning. To understand organelle adaptation in response to changing nutritional conditions, we analyzed 3D fluorescent microscopy volumes of liver samples labeled to simultaneously visualize mitochondria, peroxisomes, and lipid droplets from mice subjected to different diets: a control diet, a high-fat diet, and a control diet plus fasting. A Cellpose based pipeline was implemented for cell and organelle segmentation, which allowed us to measure 100 different organelle metrics and helped us define subcellular architectures in liver samples at the single cell level. Our results showed that hepatocytes display distinct subcellular architectures within different regions of the liver-close to the central vein, in the middle region, and near the portal vein- and across the various diet groups, thus reflecting their adaptation to specific nutritional inputs. Principal component analysis and clustering of hepatocytes based on organelle signatures revealed 12 different hepatocyte categories within the different experimental groups, highlighting a reduction in hepatocyte heterogeneity under nutritional perturbations. Finally, using single cell organelle signatures exclusively, we generated machine learning models that were able to predict with high accuracy different hepatocyte categories, diet groups, and the stages of MASLD. Our results demonstrate how organelle signatures can be used as hallmarks to define hepatocyte heterogeneity and their adaptation to different nutritional conditions. In the future, our strategy, which combines subcellular resolution imaging of liver volumes and machine learning, could help establish protocols to better define and predict liver disease progression.
View Publication PageThe cerebellum is thought to help detect and correct errors between intended and executed commands and is critical for social behaviours, cognition and emotion. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer. However, maximizing encoding capacity reduces the resilience to noise. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.
View Publication PageStructured learning provides a powerful framework for empirical risk minimization on the predictions of structured models. It allows end-to-end learning of model parameters to minimize an application specific loss function. This framework is particularly well suited for discrete optimization models that are used for neuron reconstruction from anisotropic electron microscopy (EM) volumes. However, current methods are still learning unary potentials by training a classifier that is agnostic about the model it is used in. We believe the reason for that lies in the difficulties of (1) finding a representative training sample, and (2) designing an application specific loss function that captures the quality of a proposed solution. In this paper, we show how to find a representative training sample from human generated ground truth, and propose a loss function that is suitable to minimize topological errors in the reconstruction. We compare different training methods on two challenging EM-datasets. Our structured learning approach shows consistently higher reconstruction accuracy than other current learning methods.
View Publication PageNeural circuit reconstruction at single synapse resolution is increasingly recognized as crucially important to decipher the function of biological nervous systems. Volume electron microscopy in serial transmission or scanning mode has been demonstrated to provide the necessary resolution to segment or trace all neurites and to annotate all synaptic connections.
Automatic annotation of synaptic connections has been done successfully in near isotropic electron microscopy of vertebrate model organisms. Results on non-isotropic data in insect models, however, are not yet on par with human annotation.
We designed a new 3D-U-Net architecture to optimally represent isotropic fields of view in non-isotropic data. We used regression on a signed distance transform of manually annotated synaptic clefts of the CREMI challenge dataset to train this model and observed significant improvement over the state of the art.
We developed open source software for optimized parallel prediction on very large volumetric datasets and applied our model to predict synaptic clefts in a 50 tera-voxels dataset of the complete Drosophila brain. Our model generalizes well to areas far away from where training data was available.
High-throughput electron microscopy allows recording of lar- ge stacks of neural tissue with sufficient resolution to extract the wiring diagram of the underlying neural network. Current efforts to automate this process focus mainly on the segmentation of neurons. However, in order to recover a wiring diagram, synaptic partners need to be identi- fied as well. This is especially challenging in insect brains like Drosophila melanogaster, where one presynaptic site is associated with multiple post- synaptic elements. Here we propose a 3D U-Net architecture to directly identify pairs of voxels that are pre- and postsynaptic to each other. To that end, we formulate the problem of synaptic partner identification as a classification problem on long-range edges between voxels to encode both the presence of a synaptic pair and its direction. This formulation allows us to directly learn from synaptic point annotations instead of more ex- pensive voxel-based synaptic cleft or vesicle annotations. We evaluate our method on the MICCAI 2016 CREMI challenge and improve over the current state of the art, producing 3% fewer errors than the next best method.
View Publication PageIn this paper, we present a novel error measure to compare a computer-generated segmentation of images or volumes against ground truth. This measure, which we call Tolerant Edit Distance (TED), is motivated by two observations that we usually encounter in biomedical image processing: (1) Some errors, like small boundary shifts, are tolerable in practice. Which errors are tolerable is application dependent and should be explicitly expressible in the measure. (2) Non-tolerable errors have to be corrected manually. The effort needed to do so should be reflected by the error measure. Our measure is the minimal weighted sum of split and merge operations to apply to one segmentation such that it resembles another segmentation within specified tolerance bounds. This is in contrast to other commonly used measures like Rand index or variation of information, which integrate small, but tolerable, differences. Additionally, the TED provides intuitive numbers and allows the localization and classification of errors in images or volumes. We demonstrate the applicability of the TED on 3D segmentations of neurons in electron microscopy images where topological correctness is arguable more important than exact boundary locations. Furthermore, we show that the TED is not just limited to evaluation tasks. We use it as the loss function in a max-margin learning framework to find parameters of an automatic neuron segmentation algorithm. We show that training to minimize the TED, i.e., to minimize crucial errors, leads to higher segmentation accuracy compared to other learning methods.
View Publication PageTwo successful approaches for the segmentation of biomedical images are (1) the selection of segment candidates from a merge-tree, and (2) the clustering of small superpixels by solving a Multi-Cut problem. In this paper, we introduce a model that unifies both approaches. Our model, the Candidate Multi-Cut (CMC), allows joint selection and clustering of segment candidates from a merge-tree. This way, we overcome the respective limitations of the individual methods: (1) the space of possible segmentations is not constrained to candidates of a merge-tree, and (2) the decision for clustering can be made on candidates larger than superpixels, using features over larger contexts. We solve the optimization problem of selecting and clustering of candidates using an integer linear program. On datasets of 2D light microscopy of cell populations and 3D electron microscopy of neurons, we show that our method generalizes well and generates more accurate segmentations than merge-tree or Multi-Cut methods alone.
View Publication Page