Filter
Associated Lab
- Aguilera Castrejon Lab (16) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (64) Apply Ahrens Lab filter
- Aso Lab (40) Apply Aso Lab filter
- Baker Lab (38) Apply Baker Lab filter
- Betzig Lab (113) Apply Betzig Lab filter
- Beyene Lab (13) Apply Beyene Lab filter
- Bock Lab (17) Apply Bock Lab filter
- Branson Lab (53) Apply Branson Lab filter
- Card Lab (42) Apply Card Lab filter
- Cardona Lab (64) Apply Cardona Lab filter
- Chklovskii Lab (13) Apply Chklovskii Lab filter
- Clapham Lab (15) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (12) Apply Darshan Lab filter
- Dennis Lab (1) Apply Dennis Lab filter
- Dickson Lab (46) Apply Dickson Lab filter
- Druckmann Lab (25) Apply Druckmann Lab filter
- Dudman Lab (50) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (11) Apply Egnor Lab filter
- Espinosa Medina Lab (19) Apply Espinosa Medina Lab filter
- Feliciano Lab (7) Apply Feliciano Lab filter
- Fetter Lab (41) Apply Fetter Lab filter
- Fitzgerald Lab (29) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (38) Apply Funke Lab filter
- Gonen Lab (91) Apply Gonen Lab filter
- Grigorieff Lab (62) Apply Grigorieff Lab filter
- Harris Lab (63) Apply Harris Lab filter
- Heberlein Lab (94) Apply Heberlein Lab filter
- Hermundstad Lab (27) Apply Hermundstad Lab filter
- Hess Lab (77) Apply Hess Lab filter
- Ilanges Lab (2) Apply Ilanges Lab filter
- Jayaraman Lab (46) Apply Jayaraman Lab filter
- Ji Lab (33) Apply Ji Lab filter
- Johnson Lab (6) Apply Johnson Lab filter
- Kainmueller Lab (19) Apply Kainmueller Lab filter
- Karpova Lab (14) Apply Karpova Lab filter
- Keleman Lab (13) Apply Keleman Lab filter
- Keller Lab (76) Apply Keller Lab filter
- Koay Lab (18) Apply Koay Lab filter
- Lavis Lab (149) Apply Lavis Lab filter
- Lee (Albert) Lab (34) Apply Lee (Albert) Lab filter
- Leonardo Lab (23) Apply Leonardo Lab filter
- Li Lab (28) Apply Li Lab filter
- Lippincott-Schwartz Lab (169) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (6) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (63) Apply Liu (Zhe) Lab filter
- Looger Lab (138) Apply Looger Lab filter
- Magee Lab (49) Apply Magee Lab filter
- Menon Lab (18) Apply Menon Lab filter
- Murphy Lab (13) Apply Murphy Lab filter
- O'Shea Lab (7) Apply O'Shea Lab filter
- Otopalik Lab (13) Apply Otopalik Lab filter
- Pachitariu Lab (48) Apply Pachitariu Lab filter
- Pastalkova Lab (18) Apply Pastalkova Lab filter
- Pavlopoulos Lab (19) Apply Pavlopoulos Lab filter
- Pedram Lab (15) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (51) Apply Reiser Lab filter
- Riddiford Lab (44) Apply Riddiford Lab filter
- Romani Lab (43) Apply Romani Lab filter
- Rubin Lab (143) Apply Rubin Lab filter
- Saalfeld Lab (63) Apply Saalfeld Lab filter
- Satou Lab (16) Apply Satou Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (67) Apply Schreiter Lab filter
- Sgro Lab (21) Apply Sgro Lab filter
- Shroff Lab (31) Apply Shroff Lab filter
- Simpson Lab (23) Apply Simpson Lab filter
- Singer Lab (80) Apply Singer Lab filter
- Spruston Lab (93) Apply Spruston Lab filter
- Stern Lab (156) Apply Stern Lab filter
- Sternson Lab (54) Apply Sternson Lab filter
- Stringer Lab (35) Apply Stringer Lab filter
- Svoboda Lab (135) Apply Svoboda Lab filter
- Tebo Lab (33) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (21) Apply Tillberg Lab filter
- Tjian Lab (64) Apply Tjian Lab filter
- Truman Lab (88) Apply Truman Lab filter
- Turaga Lab (51) Apply Turaga Lab filter
- Turner Lab (38) Apply Turner Lab filter
- Vale Lab (7) Apply Vale Lab filter
- Voigts Lab (3) Apply Voigts Lab filter
- Wang (Meng) Lab (21) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (25) Apply Wang (Shaohe) Lab filter
- Wu Lab (9) Apply Wu Lab filter
- Zlatic Lab (28) Apply Zlatic Lab filter
- Zuker Lab (25) Apply Zuker Lab filter
Associated Project Team
- CellMap (12) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- FIB-SEM Technology (3) Apply FIB-SEM Technology filter
- Fly Descending Interneuron (11) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (53) Apply FlyEM filter
- FlyLight (49) Apply FlyLight filter
- GENIE (46) Apply GENIE filter
- Integrative Imaging (4) Apply Integrative Imaging filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (18) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (26) Apply Tool Translation Team (T3) filter
- Transcription Imaging (49) Apply Transcription Imaging filter
Publication Date
- 2025 (126) Apply 2025 filter
- 2024 (216) Apply 2024 filter
- 2023 (160) Apply 2023 filter
- 2022 (193) Apply 2022 filter
- 2021 (194) Apply 2021 filter
- 2020 (196) Apply 2020 filter
- 2019 (202) Apply 2019 filter
- 2018 (232) Apply 2018 filter
- 2017 (217) Apply 2017 filter
- 2016 (209) Apply 2016 filter
- 2015 (252) Apply 2015 filter
- 2014 (236) Apply 2014 filter
- 2013 (194) Apply 2013 filter
- 2012 (190) Apply 2012 filter
- 2011 (190) Apply 2011 filter
- 2010 (161) Apply 2010 filter
- 2009 (158) Apply 2009 filter
- 2008 (140) Apply 2008 filter
- 2007 (106) Apply 2007 filter
- 2006 (92) Apply 2006 filter
- 2005 (67) Apply 2005 filter
- 2004 (57) Apply 2004 filter
- 2003 (58) Apply 2003 filter
- 2002 (39) Apply 2002 filter
- 2001 (28) Apply 2001 filter
- 2000 (29) Apply 2000 filter
- 1999 (14) Apply 1999 filter
- 1998 (18) Apply 1998 filter
- 1997 (16) Apply 1997 filter
- 1996 (10) Apply 1996 filter
- 1995 (18) Apply 1995 filter
- 1994 (12) Apply 1994 filter
- 1993 (10) Apply 1993 filter
- 1992 (6) Apply 1992 filter
- 1991 (11) Apply 1991 filter
- 1990 (11) Apply 1990 filter
- 1989 (6) Apply 1989 filter
- 1988 (1) Apply 1988 filter
- 1987 (7) Apply 1987 filter
- 1986 (4) Apply 1986 filter
- 1985 (5) Apply 1985 filter
- 1984 (2) Apply 1984 filter
- 1983 (2) Apply 1983 filter
- 1982 (3) Apply 1982 filter
- 1981 (3) Apply 1981 filter
- 1980 (1) Apply 1980 filter
- 1979 (1) Apply 1979 filter
- 1976 (2) Apply 1976 filter
- 1973 (1) Apply 1973 filter
- 1970 (1) Apply 1970 filter
- 1967 (1) Apply 1967 filter
Type of Publication
4108 Publications
Showing 441-450 of 4108 resultsThe Wiener filter is a standard means of optimizing the signal in sums of aligned, noisy images obtained by electron cryo-microscopy (cryo-EM). However, estimation of the resolution-dependent ("spectral") signal-to-noise ratio (SSNR) from the input data has remained problematic, and error reduction due to specific application of the SSNR term within a Wiener filter has not been reported. Here we describe an adjustment to the Wiener filter for optimal summation of images of isolated particles surrounded by large regions of featureless background, as is typically the case in single-particle cryo-EM applications. We show that the density within the particle area can be optimized, in the least-squares sense, by scaling the SSNR term found in the conventional Wiener filter by a factor that reflects the fraction of the image field occupied by the particle. We also give related expressions that allow the SSNR to be computed for application in this new filter, by incorporating a masking step into a Fourier Ring Correlation (FRC), a standard resolution measure. Furthermore, we show that this masked FRC estimation scheme substantially improves on the accuracy of conventional SSNR estimation methods. We demonstrate the validity of our new approach in numeric tests with simulated data corresponding to realistic cryo-EM imaging conditions. This variation of the Wiener filter and accompanying derivation should prove useful for a variety of single-particle cryo-EM applications, including 3D reconstruction.
Understanding complex biological systems requires visualizing structures and processes deep within living organisms. We developed a compact adaptive optics module and incorporated it into two- and three-photon fluorescence microscopes, to measure and correct tissue-induced aberrations. We resolved synaptic structures in deep cortical and subcortical areas of the mouse brain, and demonstrated high-resolution imaging of neuronal structures and somatosensory-evoked calcium responses in the mouse spinal cord at unprecedented depths in vivo.
Understanding complex biological systems requires visualizing structures and processes deep within living organisms. We developed a compact adaptive optics module and incorporated it into two- and three-photon fluorescence microscopes, to measure and correct tissue-induced aberrations. We resolved synaptic structures in deep cortical and subcortical areas of the mouse brain, and demonstrated high-resolution imaging of neuronal structures and somatosensory-evoked calcium responses in the mouse spinal cord at great depths in vivo.
Mycobacteria possess a multi-layered cell wall that requires extensive remodelling during cell division. We investigated the role of an amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase, a peptidoglycan remodelling enzyme implicated in cell division. We demonstrated that deletion of MSMEG_6281 (Ami1) in Mycobacterium smegmatis resulted in the formation of cellular chains, illustrative of cells that were unable to complete division. Suprisingly, viability in the Δami1 mutant was maintained through atypical lateral branching, the products of which proceeded to form viable daughter cells. We showed that these lateral buds resulted from mislocalization of DivIVA, a major determinant in facilitating polar elongation in mycobacterial cells. Failure of Δami1 mutant cells to separate also led to dysregulation of FtsZ ring bundling. Loss of Ami1 resulted in defects in septal peptidoglycan turnover with release of excess cell wall material from the septum or newly born cell poles. We noted signficant accumulation of 3-3 crosslinked muropeptides in the Δami1 mutant. We further demonstrated that deletion of ami1 leads to increased cell wall permeability and enhanced susceptiblity to cell wall targeting antibiotics. Collectively, these data provide novel insight on cell division in actinobacteria and highlights a new class of potential drug targets for mycobacterial diseases.
The sense of taste provides animals with valuable information about the nature and quality of food. Mammals can recognize and respond to a diverse repertoire of chemical entities, including sugars, salts, acids and a wide range of toxic substances. Several amino acids taste sweet or delicious (umami) to humans, and are attractive to rodents and other animals. This is noteworthy because L-amino acids function as the building blocks of proteins, as biosynthetic precursors of many biologically relevant small molecules, and as metabolic fuel. Thus, having a taste pathway dedicated to their detection probably had significant evolutionary implications. Here we identify and characterize a mammalian amino-acid taste receptor. This receptor, T1R1+3, is a heteromer of the taste-specific T1R1 and T1R3 G-protein-coupled receptors. We demonstrate that T1R1 and T1R3 combine to function as a broadly tuned L-amino-acid sensor responding to most of the 20 standard amino acids, but not to their D-enantiomers or other compounds. We also show that sequence differences in T1R receptors within and between species (human and mouse) can significantly influence the selectivity and specificity of taste responses.
The sterol regulatory element binding protein (SREBP) family of transcription activators are critical regulators of cholesterol and fatty acid homeostasis. We previously demonstrated that human SREBPs bind the CREB-binding protein (CBP)/p300 acetyltransferase KIX domain and recruit activator-recruited co-factor (ARC)/Mediator co-activator complexes through unknown mechanisms. Here we show that SREBPs use the evolutionarily conserved ARC105 (also called MED15) subunit to activate target genes. Structural analysis of the SREBP-binding domain in ARC105 by NMR revealed a three-helix bundle with marked similarity to the CBP/p300 KIX domain. In contrast to SREBPs, the CREB and c-Myb activators do not bind the ARC105 KIX domain, although they interact with the CBP KIX domain, revealing a surprising specificity among structurally related activator-binding domains. The Caenorhabditis elegans SREBP homologue SBP-1 promotes fatty acid homeostasis by regulating the expression of lipogenic enzymes. We found that, like SBP-1, the C. elegans ARC105 homologue MDT-15 is required for fatty acid homeostasis, and show that both SBP-1 and MDT-15 control transcription of genes governing desaturation of stearic acid to oleic acid. Notably, dietary addition of oleic acid significantly rescued various defects of nematodes targeted with RNA interference against sbp-1 and mdt-15, including impaired intestinal fat storage, infertility, decreased size and slow locomotion, suggesting that regulation of oleic acid levels represents a physiologically critical function of SBP-1 and MDT-15. Taken together, our findings demonstrate that ARC105 is a key effector of SREBP-dependent gene regulation and control of lipid homeostasis in metazoans.
Long-lasting internal states, like hunger, aggression, and sexual arousal, pattern ongoing behavior by defining how the sensory world is translated to specific actions that subserve the needs of an animal. Yet how enduring internal states shape sensory processing or behavior has remained unclear. In Drosophila, male flies will perform a lengthy and elaborate courtship ritual, triggered by activation of sexually-dimorphic P1 neurons, in which they faithfully follow and sing to a female. Here, by recording from males as they actively court a fictive ‘female’ in a virtual environment, we gain insight into how the salience of female visual cues is transformed by a male’s internal arousal state to give rise to persistent courtship pursuit. We reveal that the gain of LCt0a visual projection neurons is strongly increased during courtship, enhancing their sensitivity to moving targets. A simple network model based on the LCt0a circuit accurately predicts a male’s tracking of a female over hundreds of seconds, underscoring that LCt0a visual signals, once released by P1-mediated arousal, become coupled to motor pathways to deterministically control his visual pursuit. Furthermore, we find that P1 neuron activity correlates with fluctuations in the intensity of a male’s pursuit, and that their acute activation is sufficient to boost the gain of the LCt0 pathways. Together, these results reveal how alterations in a male’s internal arousal state can dynamically modulate the propagation of visual signals through a high-fidelity visuomotor circuit to guide his moment-to-moment performance of courtship.Competing Interest StatementThe authors have declared no competing interest.
In this paper we propose a framework for fully automatic, robust and accurate segmentation of the human pelvis and proximal femur in CT data. We propose a composite statistical shape model of femur and pelvis with a flexible hip joint, for which we extend the common definition of statistical shape models as well as the common strategy for their adaptation. We do not analyze the joint flexibility statistically, but model it explicitly by rotational parameters describing the bent in a ball-and-socket joint. A leave-one-out evaluation on 50 CT volumes shows that image driven adaptation of our composite shape model robustly produces accurate segmentations of both proximal femur and pelvis. As a second contribution, we evaluate a fine grain multi-object segmentation method based on graph optimization. It relies on accurate initializations of femur and pelvis, which our composite shape model can generate. Simultaneous optimization of both femur and pelvis yields more accurate results than separate optimizations of each structure. Shape model adaptation and graph based optimization are embedded in a fully automatic framework.
Animals can perform complex and purposeful behaviors by executing simpler movements in flexible sequences. It is particularly challenging to analyze behavior sequences when they are highly variable, as is the case in language production, certain types of birdsong and, as in our experiments, flies grooming. High sequence variability necessitates rigorous quantification of large amounts of data to identify organizational principles and temporal structure of such behavior. To cope with large amounts of data, and minimize human effort and subjective bias, researchers often use automatic behavior recognition software. Our standard grooming assay involves coating flies in dust and videotaping them as they groom to remove it. The flies move freely and so perform the same movements in various orientations. As the dust is removed, their appearance changes. These conditions make it difficult to rely on precise body alignment and anatomical landmarks such as eyes or legs and thus present challenges to existing behavior classification software. Human observers use speed, location, and shape of the movements as the diagnostic features of particular grooming actions. We applied this intuition to design a new automatic behavior recognition system (ABRS) based on spatiotemporal features in the video data, heavily weighted for temporal dynamics and invariant to the animal’s position and orientation in the scene. We use these spatiotemporal features in two steps of supervised classification that reflect two time-scales at which the behavior is structured. As a proof of principle, we show results from quantification and analysis of a large data set of stimulus-induced fly grooming behaviors that would have been difficult to assess in a smaller dataset of human-annotated ethograms. While we developed and validated this approach to analyze fly grooming behavior, we propose that the strategy of combining alignment-invariant features and multi-timescale analysis may be generally useful for movement-based classification of behavior from video data.
Advances in neuro-technology for mapping, manipulating, and monitoring molecularly defined cell types are rapidly advancing insight into neural circuits that regulate appetite. Here, we review these important tools and their applications in circuits that control food seeking and consumption. Technical capabilities provided by these tools establish a rigorous experimental framework for research into the neurobiology of hunger.