Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4106 Publications

Showing 451-460 of 4106 results
12/13/16 | An empirical analysis of deep network loss surfaces.
Im DJ, Tao M, Branson K
arXiv. 2016 Dec 13:arXiv:1612.04010

The training of deep neural networks is a high-dimension optimization problem with respect to the loss function of a model. Unfortunately, these functions are of high dimension and non-convex and hence difficult to characterize. In this paper, we empirically investigate the geometry of the loss functions for state-of-the-art networks with multiple stochastic optimization methods. We do this through several experiments that are visualized on polygons to understand how and when these stochastic optimization methods find minima.

View Publication Page
02/29/24 | An engineered biosensor enables dynamic aspartate measurements in living cells.
Davidsen K, Marvin JS, Aggarwal A, Brown TA, Sullivan LB
Elife. 2024 Feb 23;12:. doi: 10.7554/eLife.90024

Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.

View Publication Page
Gonen Lab
10/18/10 | An engineered DNA-binding protein self-assembles metallic nanostructures.
Hall Sedlak R, Hnilova M, Gachelet E, Przybyla L, Dranow D, Gonen T, Sarikaya M, Tamerler C, Traxler B
Chembiochem: A European Journal of Chemical Biology. 2010 Oct 18;11(15):2108-12. doi: 10.1002/cbic.201000407

The golden age of DNA: We describe a strategy for engineering bifunctional proteins that simultaneously associate with metals and DNA to create self-assembled nanostructures. A DNA binding protein engineered with a gold binding peptide arranges colloidal gold particles along a DNA guide by virtue of its introduced peptide motif. These self-assembled complexes represent a step toward constructing nanoarchitectures with potential in nanoelectronic and photonic devices.

View Publication Page
03/01/15 | An enhanced gene targeting toolkit for Drosophila: golic+.
Chen H, Huang Y, Pfeiffer BD, Yao X, Lee T
Genetics. 2015 Mar;199(3):683-94. doi: 10.1534/genetics.114.173716

Ends-out gene targeting allows seamless replacement of endogenous genes with engineered DNA fragments by homologous recombination, thus creating designer "genes" in the endogenous locus. Conventional gene targeting in Drosophila involves targeting with the preintegrated donor DNA in the larval primordial germ cells. Here we report G: ene targeting during O: ogenesis with L: ethality I: nhibitor and C: RISPR/Cas (Golic+), which improves on all major steps in such transgene-based gene targeting systems. First, donor DNA is integrated into precharacterized attP sites for efficient flip-out. Second, FLP, I-SceI, and Cas9 are specifically expressed in cystoblasts, which arise continuously from female germline stem cells, thereby providing a continual source of independent targeting events in each offspring. Third, a repressor-based lethality selection is implemented to facilitate screening for correct targeting events. Altogether, Golic+ realizes high-efficiency ends-out gene targeting in ovarian cystoblasts, which can be readily scaled up to achieve high-throughput genome editing.

View Publication Page
08/17/20 | An enzymatic toolkit for selective proteolysis, detection, and visualization of mucin-domain glycoproteins
Shon DJ, Malaker SA, Pedram K, Yang E, Krishnan V, Dorigo O, Bertozzi CR
Proceedings of the National Academy of Sciences. Jan-09-2020;117(35):21299 - 21307. doi: 10.1073/pnas.2012196117

Densely O-glycosylated mucin domains are found in a broad range of cell surface and secreted proteins, where they play key physiological roles. In addition, alterations in mucin expression and glycosylation are common in a variety of human diseases, such as cancer, cystic fibrosis, and inflammatory bowel diseases. These correlations have been challenging to uncover and establish because tools that specifically probe mucin domains are lacking. Here, we present a panel of bacterial proteases that cleave mucin domains via distinct peptide- and glycan-based motifs, generating a diverse enzymatic toolkit for mucin-selective proteolysis. By mutating catalytic residues of two such enzymes, we engineered mucin-selective binding agents with retained glycoform preferences. StcEE447D is a pan-mucin stain derived from enterohemorrhagic Escherichia coli that is tolerant to a wide range of glycoforms. BT4244E575A derived from Bacteroides thetaiotaomicron is selective for truncated, asialylated core 1 structures commonly associated with malignant and premalignant tissues. We demonstrated that these catalytically inactive point mutants enable robust detection and visualization of mucin-domain glycoproteins by flow cytometry, Western blot, and immunohistochemistry. Application of our enzymatic toolkit to ascites fluid and tissue slices from patients with ovarian cancer facilitated characterization of patients based on differences in mucin cleavage and expression patterns.

 

View Publication Page
05/28/22 | An essential experimental control for functional connectivity mapping with optogenetics.
David Tadres , Hiroshi M. Shiozaki , Ibrahim Tastekin , David L. Stern , Matthieu Louis
bioRxiv. 2022 May 28:. doi: 10.1101/2022.05.26.493610

To establish functional connectivity between two candidate neurons that might form a circuit element, a common approach is to activate an optogenetic tool such as Chrimson in the candidate pre-synaptic neuron and monitor fluorescence of the calcium-sensitive indicator GCaMP in a candidate post-synaptic neuron. While performing such experiments, we found that low levels of leaky Chrimson expression can lead to strong artifactual GCaMP signals in presumptive postsynaptic neurons even when Chrimson is not intentionally expressed in any particular neurons. Withholding all-trans retinal, the chromophore required as a co-factor for Chrimson response to light, eliminates GCaMP signal but does not provide an experimental control for leaky Chrimson expression. Leaky Chrimson expression appears to be an inherent feature of current Chrimson transgenes, since artifactual connectivity was detected with Chrimson transgenes integrated into three different genomic locations (two insertions tested in larvae; a third insertion tested in the adult fly). These false-positive signals may complicate the interpretation of functional connectivity experiments. We illustrate how a no-Gal4 negative control improves interpretability of functional connectivity assays. We also propose a simple but effective procedure to identify experimental conditions that minimize potentially incorrect interpretations caused by leaky Chrimson expression.

View Publication Page
07/22/11 | An evolutionary conserved role for anaplastic lymphoma kinase in behavioral responses to ethanol.
Lasek AW, Lim J, Kliethermes CL, Berger KH, Joslyn G, Brush G, Xue L, Robertson M, Moore MS, Vranizan K, Morris SW, Schuckit MA, White RL, Heberlein U
PLoS One. 2011 Jul 22;6(7):e22636. doi: 10.1371/journal.pone.0022636

Anaplastic lymphoma kinase (Alk) is a gene expressed in the nervous system that encodes a receptor tyrosine kinase commonly known for its oncogenic function in various human cancers. We have determined that Alk is associated with altered behavioral responses to ethanol in the fruit fly Drosophila melanogaster, in mice, and in humans. Mutant flies containing transposon insertions in dAlk demonstrate increased resistance to the sedating effect of ethanol. Database analyses revealed that Alk expression levels in the brains of recombinant inbred mice are negatively correlated with ethanol-induced ataxia and ethanol consumption. We therefore tested Alk gene knockout mice and found that they sedate longer in response to high doses of ethanol and consume more ethanol than wild-type mice. Finally, sequencing of human ALK led to the discovery of four polymorphisms associated with a low level of response to ethanol, an intermediate phenotype that is predictive of future alcohol use disorders (AUDs). These results suggest that Alk plays an evolutionary conserved role in ethanol-related behaviors. Moreover, ALK may be a novel candidate gene conferring risk for AUDs as well as a potential target for pharmacological intervention.

View Publication Page
11/22/11 | An evolving paradigm for the secretory pathway?
Lippincott-Schwartz J
Molecular biology of the cell. 2011 Nov;22(21):3929-32. doi: 10.1091/mbc.E11-05-0452

The paradigm that the secretory pathway consists of a stable endoplasmic reticulum and Golgi apparatus, using discrete transport vesicles to exchange their contents, gained important support from groundbreaking biochemical and genetic studies during the 1980s. However, the subsequent development of new imaging technologies with green fluorescent protein introduced data on dynamic processes not fully accounted for by the paradigm. As a result, we may be seeing an example of how a paradigm is evolving to account for the results of new technologies and their new ways of describing cellular processes.

View Publication Page
01/12/25 | An expanded palette of bright and photostable organellar Ca2+ sensors
Moret A, Farrants H, Fan R, Zingg K, Gee CE, Oertner TG, Rangaraju V, Schreiter ER, de Juan-Sanz J
bioRxiv. 01/2025:. doi: 10.1101/2025.01.10.632364

The use of fluorescent sensors for functional imaging has revolutionized the study of organellar Ca2+ signaling. However, understanding the dynamic interplay between intracellular Ca2+ sinks and sources requires bright, photostable and multiplexed measurements in each signaling compartment of interest to dissect the origins and destinations of Ca2+ fluxes. We introduce a new toolkit of chemigenetic indicators based on HaloCaMP, optimized to report Ca2+ dynamics in the endoplasmic reticulum (ER) and mitochondria of mammalian cells and neurons. Both ER-HaloCaMP and Mito-HaloCaMP present high brightness and responsiveness, and the use of different HaloTag ligands enables tunable red and far-red emission when quantifying organelle Ca2+ dynamics, expanding significantly multiplexing capacities of Ca2+ signaling. The improved brightness of ER-HaloCaMP using either red or far-red HaloTag ligands enabled measuring ER Ca2+ fluxes in axons of neurons, in which the ER is formed by a tiny tubule of 30-60 nanometers of diameter that impeded measurements with previous red ER Ca2+ sensors. When measuring ER Ca2+ fluxes in activated neuronal dendritic spines of cultured neurons, ER-HaloCaMP presented increased photostability compared to the gold-standard ER Ca2+ sensor in the field, ER-GCaMP6-210, while presenting the same responsiveness. On the other hand, Mito-HaloCaMP presented higher responsiveness than current red sensors, and enabled the first measurements of mitochondrial Ca2+ signaling in far-red in cell lines and primary neurons. As a proof-of-concept, we used 3-plex multiplexing to quantify interorganellar Ca2+ signaling. We show that effective transfer of Ca2+ from the ER to mitochondria depends on the ER releasing a critical amount of Ca2+. When this threshold is not met, the mobilized Ca2+ is diverted to the cytosol instead. Our new toolkit provides an expanded palette of bright, photostable and responsive organellar Ca2+ sensors, which will facilitate future studies of intracellular Ca2+ signaling.

View Publication Page
08/19/24 | An Image Processing Tool for Automated Quantification of Bacterial Burdens in Zebrafish Larvae
Yamaguchi N, Otsuna H, Eisenberg-Bord M, Ramakrishnan L
bioRxiv. 2024 Aug 19:. doi: 10.1101/2024.08.16.608298

Zebrafish larvae are used to model the pathogenesis of multiple bacteria. This transparent model offers the unique advantage of allowing quantification of fluorescent bacterial burdens (fluorescent pixel counts: FPC) in vivo by facile microscopical methods, replacing enumeration of bacteria using time-intensive plating of lysates on bacteriological media. Accurate FPC measurements require laborious manual image processing to mark the outside borders of the animals so as to delineate the bacteria inside the animals from those in the culture medium that they are in. Here, we have developed an automated ImageJ/Fiji-based macro that accurately detect the outside borders of Mycobacterium marinum-infected larvae.

View Publication Page