Our goal is to establish causal links between the dynamics of neural circuits and the behavioral decisions that an animal continuously makes as it navigates a multi-sensory world. Our focus is on computations in the central complex, a middle-of-the-insect-brain region that is thought to be important for sensory-guided decision making, navigation and motor control.
We believe that our choice of studying the function of a higher brain region involved in sensorimotor processing requires us to study neural activity in a behaving organism. Furthermore, validating any potential answers requires manipulating neural circuits in precise and well-controlled ways. This leads us to our experimental system, the fruit fly, Drosophila melanogaster, which has long been the organism of choice for behavioral genetics and comes with tools to fluorescently label, manipulate the activity of, and optically record from genetically targeted neurons.
We use electrophysiology and two-photon imaging to record from somata and processes of genetically identified neurons. For electrophysiology, we use visually guided whole-cell patch clamp, cell-attached and extracellular multi-single-unit techniques to record from labeled neurons. For optical imaging, we use recently developed genetically encoded sensors developed by the GENIE team. The advantage of such sensors is that the same genetically identified neurons and their fine processes can be targeted for imaging in fly after fly. We work in close collaboration with Michael Reiser's, Ann Hermundstad's, Sandro Romani's, Gerry Rubin's, and Kristin Branson's labs. We also benefit from our interactions with many others at Janelia, including Yoshi Aso, Alla Karpova and Josh Dudman. Our work is also powered by the wonderful support we get from Janelia's Shared Resources, in particular members of Janelia Experimental Technology, Scientific Computing and Fly Core. With a combination of electrophysiological and optical recordings, quantitative behavior, and a variety of computational techniques, we are exploring how sensory and motor information is integrated and used to determine action in the tethered fly's brain.
Establishing causal links between multimodal and pre-motor computations of neuronal ensembles and the fly's online decision-making behavior during navigation is a long-term goal for our lab. Along the way, we hope to discover some general principles about sensorimotor representations, neural computation, and the functional organization and operation of small circuits.
Open positions
If you find our work interesting enough to want to be part of the lab, please contact Vivek directly. People in the lab come from disciplines ranging from neurobiology to engineering and physics, which is reflected in the variety of experimental approaches we use and often combine. You ideally have solid quantitative skills, a strong experimental background in neurobiology, biophysics or a related field, and enjoy working collaboratively. At the moment, we are particularly looking for physiologists interested in uncovering the cellular and circuit mechanisms underlying the navigational neural dynamics we see in the central complex.
In addition, we work extensively with theory groups at Janelia, including Ann Hermundstad's lab and Sandro Romani's lab. We are happy to help find collaborative positions for talented theoretical and computational neuroscientists with expertise in dynamical systems, recurrent network modeling, and/or learning theory. Ideal applicants for these positions would have a keen interest in working closely with experimentalists to establish strong, testable links between theory and data.
We have often hosted undergraduate researchers for a summer through the Janelia Undergraduate Scholars Program. And if you are interested in our lab as a home for your Ph. D. research, you can either apply though the Janelia Joint Graduate Program or apply for a Janelia Graduate Research Fellowship.