Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 991-1000 of 3920 results
11/29/23 | Decoding life's inner workings: advances in quantitative bioimaging.
Henriques R, Leterrier C, Weigel A
Open Biology. 2023 Nov 29;13(11):230329. doi: 10.1098/rsob.230329

This special feature of , titled 'Advances in Quantitative Bioimaging', proposes an overview of the latest advancements in quantitative bioimaging techniques and their wide-ranging applications. The articles cover various topics, including modern imaging methods that enable visualization on a nanoscale, such as super-resolution microscopy and single-particle analysis. These techniques offer unparalleled insights into complex molecular structures and dynamic cellular processes , such as mapping nuclear pore proteins or tracking single histone deposition events throughout the cell cycle. The articles presented in this edition showcase cutting-edge quantitative imaging techniques coupled with advanced computational analysis capable of precisely measuring biological structures and processes. Examples range from correlating calcium release events to underlying protein organization in heart cells to pioneering tools for categorizing changes in microglia morphology under various conditions. This editorial highlights how these advancements are revolutionizing our understanding of living systems, while acknowledging challenges that must be addressed to fully exploit the potential of these emerging technologies, such as improving molecular probes, algorithms and correlation protocols.

View Publication Page
04/07/17 | Deconstructing behavioral neuropharmacology with cellular specificity.
Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, Lindo S, Mensh BD, Dudman JT, Lavis LD, Tadross MR
Science (New York, N.Y.). 2017 Apr 07;356(6333):. doi: 10.1126/science.aaj2161

Behavior has molecular, cellular, and circuit determinants. However, because many proteins are broadly expressed, their acute manipulation within defined cells has been difficult. Here, we combined the speed and molecular specificity of pharmacology with the cell type specificity of genetic tools. DART (drugs acutely restricted by tethering) is a technique that rapidly localizes drugs to the surface of defined cells, without prior modification of the native target. We first developed an AMPAR antagonist DART, with validation in cultured neuronal assays, in slices of mouse dorsal striatum, and in behaving mice. In parkinsonian animals, motor deficits were causally attributed to AMPARs in indirect spiny projection neurons (iSPNs) and to excess phasic firing of tonically active interneurons (TANs). Together, iSPNs and TANs (i.e., D2 cells) drove akinesia, whereas movement execution deficits reflected the ratio of AMPARs in D2 versus D1 cells. Finally, we designed a muscarinic antagonist DART in one iteration, demonstrating applicability of the method to diverse targets.

View Publication Page
Sternson Lab
08/09/12 | Deconstruction of a neural circuit for hunger.
Atasoy D, Betley JN, Su HH, Sternson SM
Nature. 2012 Aug 9;488(7410):172-7. doi: 10.1038/nature11270

Hunger is a complex behavioural state that elicits intense food seeking and consumption. These behaviours are rapidly recapitulated by activation of starvation-sensitive AGRP neurons, which present an entry point for reverse-engineering neural circuits for hunger. Here we mapped synaptic interactions of AGRP neurons with multiple cell populations in mice and probed the contribution of these distinct circuits to feeding behaviour using optogenetic and pharmacogenetic techniques. An inhibitory circuit with paraventricular hypothalamus (PVH) neurons substantially accounted for acute AGRP neuron-evoked eating, whereas two other prominent circuits were insufficient. Within the PVH, we found that AGRP neurons target and inhibit oxytocin neurons, a small population that is selectively lost in Prader-Willi syndrome, a condition involving insatiable hunger. By developing strategies for evaluating molecularly defined circuits, we show that AGRP neuron suppression of oxytocin neurons is critical for evoked feeding. These experiments reveal a new neural circuit that regulates hunger state and pathways associated with overeating disorders.

View Publication Page
06/17/13 | Decoupled roles for the atypical, bifurcated binding pocket of the ybfF hydrolase.
Ellis EE, Adkins CT, Galovska NM, Lavis LD, Johnson RJ
Chembiochem : A European Journal of Chemical Biology. 2013 Jun 17;14(9):1134-44. doi: 10.1002/cbic.201300085

Serine hydrolases have diverse intracellular substrates, biological functions, and structural plasticity, and are thus important for biocatalyst design. Amongst serine hydrolases, the recently described ybfF enzyme family are promising novel biocatalysts with an unusual bifurcated substrate-binding cleft and the ability to recognize commercially relevant substrates. We characterized in detail the substrate selectivity of a novel ybfF enzyme from Vibrio cholerae (Vc-ybfF) by using a 21-member library of fluorogenic ester substrates. We assigned the roles of the two substrate-binding clefts in controlling the substrate selectivity and folded stability of Vc-ybfF by comprehensive substitution analysis. The overall substrate preference of Vc-ybfF was for short polar chains, but it retained significant activity with a range of cyclic and extended esters. This broad substrate specificity combined with the substitutional analysis demonstrates that the larger binding cleft controls the substrate specificity of Vc-ybfF. Key selectivity residues (Tyr116, Arg120, Tyr209) are also located at the larger binding pocket and control the substrate specificity profile. In the structure of ybfF the narrower binding cleft contains water molecules prepositioned for hydrolysis, but based on substitution this cleft showed only minimal contribution to catalysis. Instead, the residues surrounding the narrow binding cleft and at the entrance to the binding pocket contributed significantly to the folded stability of Vc-ybfF. The relative contributions of each cleft of the binding pocket to the catalytic activity and folded stability of Vc-ybfF provide a valuable map for designing future biocatalysts based on the ybfF scaffold.

View Publication Page
06/03/99 | Decrystallization of adult birdsong by perturbation of auditory feedback.
Leonardo A, Konishi M
Nature. 1999 Jun 3;399(6735):466-70. doi: 10.1038/20933

Young birds learn to sing by using auditory feedback to compare their own vocalizations to a memorized or innate song pattern; if they are deafened as juveniles, they will not develop normal songs. The completion of song development is called crystallization. After this stage, song shows little variation in its temporal or spectral properties. However, the mechanisms underlying this stability are largely unknown. Here we present evidence that auditory feedback is actively used in adulthood to maintain the stability of song structure. We found that perturbing auditory feedback during singing in adult zebra finches caused their song to deteriorate slowly. This ’decrystallization’ consisted of a marked loss of the spectral and temporal stereotypy seen in crystallized song, including stuttering, creation, deletion and distortion of song syllables. After normal feedback was restored, these deviations gradually disappeared and the original song was recovered. Thus, adult birds that do not learn new songs nevertheless retain a significant amount of plasticity in the brain.

View Publication Page
Zlatic LabTruman Lab
03/28/18 | Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues.
Humberg T, Bruegger P, Afonso B, Zlatic M, Truman JW, Gershow M, Samuel A, Sprecher SG
Nature Communications. 2018 Mar 28;9(1):1260. doi: 10.1038/s41467-018-03520-5

To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.

View Publication Page
09/03/21 | Deep learning enables fast and dense single-molecule localization with high accuracy
Speiser A, Müller L, Matti U, Obara CJ, Legant WR, Kreshuk A, Macke JH, Ries J, Turaga SC
Nature Methods. 2021 Sep 03;18(9):. doi: 10.1101/2020.10.26.355164

Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but the need for activating only single isolated emitters limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE, a computational tool that can localize single emitters at high density in 3D with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 data-sets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to take live-cell SMLM data with reduced light exposure in just 3 seconds and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many labs to reduce imaging times and increase localization density in SMLM.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
09/04/17 | Deep learning for isotropic super-resolution from non-isotropic 3D electron microscopy.
Heinrich L, Bogovic JA, Saalfeld S
International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017. MICCAI 2017. Lecture Notes in Computer Science. 2017 Sept 4;10434:arXiv:1706.03142. doi: 10.1007/978-3-319-66185-8_16

The most sophisticated existing methods to generate 3D isotropic super-resolution (SR) from non-isotropic electron microscopy (EM) are based on learned dictionaries. Unfortunately, none of the existing methods generate practically satisfying results. For 2D natural images, recently developed super-resolution methods that use deep learning have been shown to significantly outperform the previous state of the art. We have adapted one of the most successful architectures (FSRCNN) for 3D super-resolution, and compared its performance to a 3D U-Net architecture that has not been used previously to generate super-resolution. We trained both architectures on artificially downscaled isotropic ground truth from focused ion beam milling scanning EM (FIB-SEM) and tested the performance for various hyperparameter settings.

Our results indicate that both architectures can successfully generate 3D isotropic super-resolution from non-isotropic EM, with the U-Net performing consistently better. We propose several promising directions for practical application.

View Publication Page
05/17/24 | Deep-Tissue Spatial Omics: Imaging Whole-Embryo Transcriptomics and Subcellular Structures at High Spatial Resolution
Gandin V, Kim J, Yang L, Lian Y, Kawase T, Hu A, Rokicki K, Fleishman G, Tillberg P, Aguilera Castrejon A, Stringer C, Preibisch S, Liu ZJ
bioRxiv. 2024 May 17:. doi: 10.1101/2024.05.17.594641

The inherent limitations of fluorescence microscopy, notably the restricted number of color channels, have long constrained comprehensive spatial analysis in biological specimens. Here, we introduce cycleHCR technology that leverages multicycle DNA barcoding and Hybridization Chain Reaction (HCR) to surpass the conventional color barrier. cycleHCR facilitates high-specificity, single-shot imaging per target for RNA and protein species within thick specimens, mitigating the molecular crowding issues encountered with other imaging-based spatial omics techniques. We demonstrate whole-mount transcriptomics imaging of 254 genes within an E6.5\~7.0 mouse embryo, achieving precise three-dimensional gene expression and cell fate mapping across a specimen depth of \~ 310 µm. Utilizing expansion microscopy alongside protein cycleHCR, we unveil the complex network of 10 subcellular structures in primary mouse embryonic fibroblasts. Furthermore, in mouse hippocampal slice, we image 8 protein targets and profile the transcriptome of 120 genes, uncovering complex gene expression gradients and cell-type specific nuclear structural variances. cycleHCR provides a unifying framework for multiplex RNA and protein imaging, offering a quantitative solution for elucidating spatial regulations in deep tissue contexts for research and potentially diagnostic applications.

View Publication Page
09/05/18 | Defective cortex glia plasma membrane structure underlies light-induced epilepsy in mutants.
Kunduri G, Turner-Evans D, Konya Y, Izumi Y, Nagashima K, Lockett S, Holthuis J, Bamba T, Acharya U, Acharya JK
Proceedings of the National Academy of Sciences of the United States of America. 2018 Sep 05;115(38):E8919-28. doi: 10.1073/pnas.1808463115

Seizures induced by visual stimulation (photosensitive epilepsy; PSE) represent a common type of epilepsy in humans, but the molecular mechanisms and genetic drivers underlying PSE remain unknown, and no good genetic animal models have been identified as yet. Here, we show an animal model of PSE, in , owing to defective cortex glia. The cortex glial membranes are severely compromised in ceramide phosphoethanolamine synthase ()-null mutants and fail to encapsulate the neuronal cell bodies in the neuronal cortex. Expression of human sphingomyelin synthase 1, which synthesizes the closely related ceramide phosphocholine (sphingomyelin), rescues the cortex glial abnormalities and PSE, underscoring the evolutionarily conserved role of these lipids in glial membranes. Further, we show the compromise in plasma membrane structure that underlies the glial cell membrane collapse in mutants and leads to the PSE phenotype.

View Publication Page