Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 711-720 of 3945 results
03/06/24 | Cell division machinery drives cell-specific gene activation during differentiation in .
Chareyre S, Li X, Anjuwon-Foster BR, Updegrove TB, Clifford S, Brogan AP, Su Y, Zhang L, Chen J, Shroff H, Ramamurthi KS
Proc Natl Acad Sci U S A. 2024 Mar 6;121(13):e2400584121. doi: 10.1073/pnas.2400584121

When faced with starvation, the bacterium transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σ is exclusively activated in the smaller daughter cell. Compartment-specific activation of σ requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σ in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.

View Publication Page
Kainmueller Lab
12/01/17 | Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc.
Dye NA, Popović M, Spannl S, Etournay R, Kainmüller D, Ghosh S, Myers EW, Jülicher F, Eaton S
Development (Cambridge, England). 2017 Dec 01;144(23):4406-4421. doi: 10.1242/dev.155069

Quantitative analysis of the dynamic cellular mechanisms shaping the Drosophila wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires explants to be imaged under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems in vivo and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to observe growth directly and to apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that whereas cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.

View Publication Page
06/07/23 | Cell type-specific contributions to a persistent aggressive internal state in female Drosophila
Hui Chiu , Alice A. Robie , Kristin M. Branson , Tanvi Vippa , Samantha Epstein , Gerald M. Rubin , David J. Anderson , Catherine E. Schretter
bioRxiv. 2023 Jun 07:. doi: 10.1101/2023.06.07.543722

Persistent internal states are important for maintaining survival-promoting behaviors, such as aggression. In female Drosophila melanogaster, we have previously shown that individually activating either aIPg or pC1d cell types can induce aggression. Here we investigate further the individual roles of these cholinergic, sexually dimorphic cell types, and the reciprocal connections between them, in generating a persistent aggressive internal state. We find that a brief 30-second optogenetic stimulation of aIPg neurons was sufficient to promote an aggressive internal state lasting at least 10 minutes, whereas similar stimulation of pC1d neurons did not. While we previously showed that stimulation of pC1e alone does not evoke aggression, persistent behavior could be promoted through simultaneous stimulation of pC1d and pC1e, suggesting an unexpected synergy of these cell types in establishing a persistent aggressive state. Neither aIPg nor pC1d show persistent neuronal activity themselves, implying that the persistent internal state is maintained by other mechanisms. Moreover, inactivation of pC1d did not significantly reduce aIPg-evoked persistent aggression arguing that the aggressive state did not depend on pC1d-aIPg recurrent connectivity. Our results suggest the need for alternative models to explain persistent female aggression.

View Publication Page
10/01/12 | Cell type-specific genomics of Drosophila neurons.
Henry GL, Davis FP, Picard S, Eddy SR
Nucleic Acids Research. 2012 Oct;40(19):9691-704. doi: 10.1093/nar/gks671

Many tools are available to analyse genomes but are often challenging to use in a cell type-specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B. and Henikoff,S. (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell, 18, 1030-1040; Steiner,F.A., Talbert,P.B., Kasinathan,S., Deal,R.B. and Henikoff,S. (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res., doi:10.1101/gr.131748.111], first developed in plants, for use in Drosophila neurons. We profile gene expression and histone modifications in Kenyon cells and octopaminergic neurons in the adult brain. In addition to recovering known gene expression differences, we also observe significant cell type-specific chromatin modifications. In particular, a small subset of differentially expressed genes exhibits a striking anti-correlation between repressive and activating histone modifications. These genes are enriched for transcription factors, recovering those known to regulate mushroom body identity and predicting analogous regulators of octopaminergic neurons. Our results suggest that applying INTACT to specific neuronal populations can illuminate the transcriptional regulatory networks that underlie neuronal cell identity.

View Publication Page
Sternson Lab
09/11/15 | Cell type-specific pharmacology of NMDA receptors using masked MK801.
Yang Y, Lee P, Sternson SM
eLife. 2015 Sep 11;4:. doi: 10.7554/eLife.10206

N-Methyl-D-aspartate receptors (NMDA-Rs) are ion channels that are important for synaptic plasticity, which is involved in learning and drug addiction. We show enzymatic targeting of an NMDA-R antagonist, MK801, to a molecularly defined neuronal population with the cell-type-selectivity of genetic methods and the temporal control of pharmacology. We find that NMDA-Rs on dopamine neurons are necessary for cocaine-induced synaptic potentiation, demonstrating that cell type-specific pharmacology can be used to dissect signaling pathways within complex brain circuits.

View Publication Page
07/01/07 | Cell type-specific relationships between spiking and [Ca2+]i in neurons of the Xenopus tadpole olfactory bulb.
Lin B, Chen T, Schild D
The Journal of Physiology. 2007 Jul 1;582(Pt 1):163-75. doi: 10.1113/jphysiol.2006.125963

Multi-neuronal recordings with Ca2+ indicator dyes usually relate [Ca2+]i to action potentials (APs) assuming a stereotypical dependency between the two. However, [Ca2+]i affects and is affected by numerous complex mechanisms that differ from cell type to cell type, from cell compartment to cell compartment. Moreover, [Ca2+]i depends on the specific way a cell is activated. Here we investigate, by combining calcium imaging and on-cell patch clamp recordings, the relationship between APs (spiking) and somatic [Ca2+]i in mitral and granule cells of the olfactory bulb in Xenopus laevis tadpoles. Both cell types exhibit ongoing and odour-modulated [Ca2+]i dynamics. In mitral cells, the occurrence of APs in both spontaneous and odour-evoked situations correlates tightly to step-like [Ca2+]i increases. Moreover, odorant-induced suppression of spontaneous firing couples to a decrease in [Ca2+]i. In contrast, granule cells show a substantial number of uncorrelated events such as increases in [Ca2+]i without APs occurring or APs without any effect upon [Ca2+]i. The correlation between spiking and [Ca2+]i is low, possibly due to somatic NMDAR-mediated and subthreshold voltage-activated Ca2+ entries, and thus does not allow a reliable prediction of APs based on calcium imaging. Taken together, our results demonstrate that the relationship between somatic [Ca2+]i and APs can be cell type specific. Taking [Ca2+]i dynamics as an indicator for spiking activity is thus only reliable if the correlation has been established in the system of interest. When [Ca2+]i and APs are precisely correlated, fast calcium imaging is an extremely valuable tool for determining spatiotemporal patterns of APs in neuronal population.

View Publication Page
Sternson Lab
09/02/15 | Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss.
Henry FE, Sugino K, Tozer A, Branco T, Sternson SM
eLife. 2015 Sep 2;4:. doi: 10.7554/eLife.09800

Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed POMC neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders.

View Publication Page
02/07/18 | Cell type-specific variation of somatotopic precision across corticostriatal projections.
Hooks BM, Papale AE, Paletzki R, Feroze M, Eastwood BS, Couey JJ, Winnubst J, Chandrashekar J, Gerfen CR
bioRxiv. 2018 Feb 7:. doi: 10.1101/261446

The striatum shows general topographic organization and regional differences in behavioral functions. How corticostriatal topography differs across cortical areas and cell types to support these distinct functions is unclear. This study contrasted corticostriatal projections from two layer 5 cell types, intratelencephalic (IT-type) and pyramidal tract (PT-type) neurons, using viral vectors expressing fluorescent reporters in Cre-driver mice. Long-range corticostriatal projections from sensory and motor cortex are somatotopic, with a decreasing somatotopic specificity as injections move from sensory to motor and frontal areas. Somatotopic organization differs between IT-type and PT-type neurons, including injections in the same site, with IT-type neurons having higher somatotopic stereotypy than PT-type neurons. Furthermore, IT-type projections from interconnected cortical areas have stronger correlations in corticostriatal targeting than PT-type projections do. Thus, as predicted by a long-standing basal ganglia model, corticostriatal projections of interconnected cortical areas form parallel circuits in basal ganglia-thalamus-cortex loops.

View Publication Page
05/01/14 | Cell types and coincident synapses in the ellipsoid body of Drosophila.
Martín-Peña A, Acebes A, Rodríguez J, Chevalier V, Casas-Tinto S, Triphan T, Strauss R, Ferrús A
The European Journal of Neuroscience. 2014 May;39(10):1586-601. doi: 10.1111/ejn.12537

Cellular ultrastructures for signal integration are unknown in any nervous system. The ellipsoid body (EB) of the Drosophila brain is thought to control locomotion upon integration of various modalities of sensory signals with the animal internal status. However, the expected excitatory and inhibitory input convergence that virtually all brain centres exhibit is not yet described in the EB. Based on the EB expression domains of genetic constructs from the choline acetyl transferase (Cha), glutamic acid decarboxylase (GAD) and tyrosine hydroxylase (TH) genes, we identified a new set of neurons with the characteristic ring-shaped morphology (R neurons) which are presumably cholinergic, in addition to the existing GABA-expressing neurons. The R1 morphological subtype is represented in the Cha- and TH-expressing classes. In addition, using transmission electron microscopy, we identified a novel type of synapse in the EB, which exhibits the precise array of two independent active zones over the same postsynaptic dendritic domain, that we named 'agora'. This array is compatible with a coincidence detector role, and represents ~8% of all EB synapses in Drosophila. Presumably excitatory R neurons contribute to coincident synapses. Functional silencing of EB neurons by driving genetically tetanus toxin expression either reduces walking speed or alters movement orientation depending on the targeted R neuron subset, thus revealing functional specialisations in the EB for locomotion control.

View Publication Page
11/03/20 | Cell types and neuronal circuitry underlying female aggression in Drosophila.
Schretter CE, Aso Y, Robie AA, Dreher M, Dolan M, Chen N, Ito M, Yang T, Parekh R, Branson KM, Rubin GM
eLife. 2020 Nov 03;9:. doi: 10.7554/eLife.58942

Aggressive social interactions are used to compete for limited resources and are regulated by complex sensory cues and the organism's internal state. While both sexes exhibit aggression, its neuronal underpinnings are understudied in females. Here, we identify a population of sexually dimorphic aIPg neurons in the adult central brain whose optogenetic activation increased, and genetic inactivation reduced, female aggression. Analysis of GAL4 lines identified in an unbiased screen for increased female chasing behavior revealed the involvement of another sexually dimorphic neuron, pC1d, and implicated aIPg and pC1d neurons as core nodes regulating female aggression. Connectomic analysis demonstrated that aIPg neurons and pC1d are interconnected and suggest that aIPg neurons may exert part of their effect by gating the flow of visual information to descending neurons. Our work reveals important regulatory components of the neuronal circuitry that underlies female aggressive social interactions and provides tools for their manipulation.

View Publication Page