Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Wang Shaohe Lab / Publications
general_search_page-panel_pane_1 | views_panes

24 Publications

Showing 1-10 of 24 results
05/31/24 | Salivary gland developmental mechanics
Morales EA, Wang S
Current Topics in Developmental Biology:. doi: 10.1016/bs.ctdb.2024.05.002

The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.

View Publication Page
05/14/24 | The kinase ZYG-1 phosphorylates the cartwheel protein SAS-5 to drive centriole assembly in C. elegans
Sankaralingam P, Wang S, Liu Y, Oegema KF, O'Connell KF
EMBO Rep. 2024 May 14:. doi: 10.1038/s44319-024-00157-y

Centrioles organize centrosomes, the cell's primary microtubule-organizing centers (MTOCs). Centrioles double in number each cell cycle, and mis-regulation of this process is linked to diseases such as cancer and microcephaly. In C. elegans, centriole assembly is controlled by the Plk4 related-kinase ZYG-1, which recruits the SAS-5-SAS-6 complex. While the kinase activity of ZYG-1 is required for centriole assembly, how it functions has not been established. Here we report that ZYG-1 physically interacts with and phosphorylates SAS-5 on 17 conserved serine and threonine residues in vitro. Mutational scanning reveals that serine 10 and serines 331/338/340 are indispensable for proper centriole assembly. Embryos expressing SAS-5 exhibit centriole assembly failure, while those expressing SAS-5 possess extra centrioles. We show that in the absence of serine 10 phosphorylation, the SAS-5-SAS-6 complex is recruited to centrioles, but is not stably incorporated, possibly due to a failure to coordinately recruit the microtubule-binding protein SAS-4. Our work defines the critical role of phosphorylation during centriole assembly and reveals that ZYG-1 might play a role in preventing the formation of excess centrioles.

View Publication Page
05/10/24 | Imaging the extracellular matrix in live tissues and organisms with a glycan-binding fluorophore
Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Kumar P, Grimm JB, Dilan TL, Ruetten VM, Ahrens MB, Shroff H, Lavis LD, Wang S, Weaver VM, Pedram K
bioRxiv. 2024 May 10:. doi: 10.1101/2024.05.09.593460

All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.

View Publication Page
05/07/24 | Salivary Gland Tissue Recombination Can Modify Cell Fate
Sekiguchi R, Martin D, Doyle AD, Wang S, Genomics and Computational Biology Core , Yamada KM
J Dent Res. 2024 May 07:220345241247484. doi: 10.1177/00220345241247484

Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate the roles of tissue interactions in cellular differentiation, we performed single-cell RNA sequencing and imaging analyses on recombined tissues, where mesenchyme and epithelium were switched ex vivo between two types of embryonic mouse salivary glands: the parotid gland (a serous gland) and the submandibular gland (a predominantly mucous gland). We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. The parotid epithelium recombined with submandibular mesenchyme began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be modified in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.

View Publication Page
06/14/23 | Tissue Morphogenesis Through Dynamic Cell and Matrix Interactions.
Wu D, Yamada KM, Wang S
Annual Reviews Cell Developmental Biology. 2023 Jun 14:. doi: 10.1146/annurev-cellbio-020223-031019

Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis. Expected final online publication date for the , Volume 39 is October 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
11/10/22 | Efficient Gene Knockout in Salivary Gland Epithelial Explant Cultures
R. Sekiguchi , M.M. Mehlferber , K. Matsumoto , S. Wang
Journal of Dental Research. 11/2022;102:197-206. doi: 10.1177/00220345221128201

We have developed methods to achieve efficient CRISPR-Cas9–mediated gene knockout in ex vivo mouse embryonic salivary epithelial explants. Salivary epithelial explants provide a valuable model for characterizing cell signaling, differentiation, and epithelial morphogenesis, but research has been limited by a paucity of efficient gene perturbation methods. Here, we demonstrate highly efficient gene perturbation by transient transduction of guide RNA–expressing lentiviruses into Cas9-expressing salivary epithelial buds isolated from Cas9 transgenic mice. We first show that salivary epithelial explants can be cultured in low-concentration, nonsolidified Matrigel suspensions in 96-well plates, which greatly increases sample throughput compared to conventional cultures embedded in solidified Matrigel. We further show that salivary epithelial explants can grow and branch with FGF7 alone, while supplementing with insulin, transferrin, and selenium (ITS) enhances growth and branching. We then describe an efficient workflow to produce experiment-ready, high-titer lentiviruses within 1 wk after molecular cloning. To track transduced cells, we designed the lentiviral vector to coexpress a nuclear fluorescent reporter with the guide RNA. We routinely achieved 80% transduction efficiency when antibiotic selection was used. Importantly, we detected robust loss of targeted protein products when testing 9 guide RNAs for 3 different genes. Moreover, targeting the β1 integrin gene (Itgb1) inhibited branching morphogenesis, which supports the importance of cell–matrix adhesion in driving branching morphogenesis. In summary, we have established a lentivirus-based method that can efficiently perturb genes of interest in salivary epithelial explants, which will greatly facilitate studies of specific gene functions using this system.

View Publication Page
06/09/22 | Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion
Shaohe Wang , Kazue Matsumoto , Samantha R. Lish , Alexander X. Cartagena-Rivera , Kenneth M. Yamada
Cell;184:3702-3716.e30. doi: https://doi.org/10.1016/j.cell.2021.05.015

Summary Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required β1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.

View Publication Page
02/06/21 | ZCCHC8 is required for the degradation of pervasive transcripts originating from multiple genomic regulatory features
Joshua W. Collins , Daniel Martin , Genomics , Computational Biology Core , Shaohe Wang , Kenneth M. Yamada
bioRxiv. 02/2021:. doi: 10.1101/2021.01.29.428898

The vast majority of mammalian genomes are transcribed as non-coding RNA in what is referred to as “pervasive transcription.” Recent studies have uncovered various families of non-coding RNA transcribed upstream of transcription start sites. In particular, highly unstable promoter upstream transcripts known as PROMPTs have been shown to be targeted for exosomal degradation by the nuclear exosome targeting complex (NEXT) consisting of the RNA helicase MTR4, the zinc-knuckle scaffold ZCCHC8, and the RNA binding protein RBM7. Here, we report that in addition to its known RNA substrates, ZCCHC8 is required for the targeted degradation of pervasive transcripts produced at CTCF binding sites, open chromatin regions, promoters, promoter flanking regions, and transcription factor binding sites. Additionally, we report that a significant number of RIKEN cDNAs and predicted genes display the hallmarks of PROMPTs and are also substrates for ZCCHC8 and/or NEXT complex regulation suggesting these are unlikely to be functional genes. Our results suggest that ZCCHC8 and/or the NEXT complex may play a larger role in the global regulation of pervasive transcription than previously reported.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
01/05/21 | Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome
Ohta M, Zhao Z, Wu D, Wang S, Harrison JL, Gómez-Cavazos JS, Desai A, Oegema KF
Journal of Cell Biology. 01/2021;220:. doi: 10.1083/jcb.202009083

Centrosomes are composed of a centriolar core surrounded by a pericentriolar material (PCM) matrix that docks microtubule-nucleating γ-tubulin complexes. During mitotic entry, the PCM matrix increases in size and nucleating capacity in a process called centrosome maturation. Polo-like kinase 1 (PLK1) is recruited to centrosomes and phosphorylates PCM matrix proteins to drive their self-assembly, which leads to PCM expansion. Here, we show that in addition to controlling PCM expansion, PLK1 independently controls the generation of binding sites for γ-tubulin complexes on the PCM matrix. Selectively preventing the generation of PLK1-dependent γ-tubulin docking sites led to spindle defects and impaired chromosome segregation without affecting PCM expansion, highlighting the importance of phospho-regulated centrosomal γ-tubulin docking sites in spindle assembly. Inhibiting both γ-tubulin docking and PCM expansion by mutating substrate target sites recapitulated the effects of loss of centrosomal PLK1 on the ability of centrosomes to catalyze spindle assembly.

View Publication Page
03/09/20 | Basement Membrane Regulates Fibronectin Organization Using Sliding Focal Adhesions Driven by a Contractile Winch
Jiaoyang Lu , Andrew D. Doyle , Yoshinari Shinsato , Shaohe Wang , Molly A. Bodendorfer , Minhua Zheng , Kenneth M. Yamada
Developmental Cell. 03/2020;52:631-646.e4. doi: https://doi.org/10.1016/j.devcel.2020.01.007

Summary We have discovered that basement membrane and its major components can induce rapid, strikingly robust fibronectin organization. In this new matrix assembly mechanism, α5β1 integrin-based focal adhesions slide actively on the underlying matrix toward the ventral cell center through the dynamic shortening of myosin IIA-associated actin stress fibers to drive rapid fibronectin fibrillogenesis distal to the adhesion. This mechanism contrasts with classical fibronectin assembly based on stable or fixed-position focal adhesions containing αVβ3 integrins plus α5β1 integrin translocation into proximal fibrillar adhesions. On basement membrane components, these sliding focal adhesions contain standard focal adhesion constituents but completely lack classical αVβ3 integrins. Instead, peripheral α3β1 or α2β1 adhesions mediate initial cell attachment but over time are switched to α5β1 integrin-based sliding focal adhesions to assemble fibronectin matrix. This basement-membrane-triggered mechanism produces rapid fibronectin fibrillogenesis, providing a mechanistic explanation for the well-known widespread accumulation of fibronectin at many organ basement membranes.

View Publication Page