Filter
Associated Lab
Publication Date
Type of Publication
24 Publications
Showing 21-24 of 24 resultsSummary Dynamic coupling of microtubule ends to kinetochores, built on the centromeres of chromosomes, directs chromosome segregation during cell division. Here, we report that the evolutionarily ancient kinetochore-microtubule coupling machine, the KMN (Knl1/Mis12/Ndc80-complex) network, plays a critical role in neuronal morphogenesis. We show that the KMN network concentrates in microtubule-rich dendrites of developing sensory neurons that collectively extend in a multicellular morphogenetic event that occurs during C. elegans embryogenesis. Post-mitotic degradation of KMN components in sensory neurons disrupts dendritic extension, leading to patterning and functional defects in the sensory nervous system. Structure-guided mutations revealed that the molecular interface that couples kinetochores to spindle microtubules also functions in neuronal development. These results identify a cell-division-independent function for the chromosome-segregation machinery and define a microtubule-coupling-dependent event in sensory nervous system morphogenesis.
Summary Precise regulation of microtubule (MT) dynamics is increasingly recognized as a critical determinant of axon regeneration. In contrast to developing neurons, mature axons exhibit noncentrosomal microtubule nucleation. The factors regulating noncentrosomal MT architecture in axon regeneration remain poorly understood. We report that PTRN-1, the C. elegans member of the Patronin/Nezha/calmodulin- and spectrin-associated protein (CAMSAP) family of microtubule minus-end-binding proteins, is critical for efficient axon regeneration in vivo. ptrn-1-null mutants display generally normal developmental axon outgrowth but significantly impaired regenerative regrowth after laser axotomy. Unexpectedly, mature axons in ptrn-1 mutants display elevated numbers of dynamic axonal MTs before and after injury, suggesting that PTRN-1 inhibits MT dynamics. The CKK domain of PTRN-1 is necessary and sufficient for its functions in axon regeneration and MT dynamics and appears to stabilize MTs independent of minus-end localization. Whereas in developing neurons, PTRN-1 inhibits activity of the DLK-1 mitogen-activated protein kinase (MAPK) cascade, we find that, in regeneration, PTRN-1 and DLK-1 function together to promote axonal regrowth.
Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis. Expected final online publication date for the , Volume 39 is October 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
The vast majority of mammalian genomes are transcribed as non-coding RNA in what is referred to as “pervasive transcription.” Recent studies have uncovered various families of non-coding RNA transcribed upstream of transcription start sites. In particular, highly unstable promoter upstream transcripts known as PROMPTs have been shown to be targeted for exosomal degradation by the nuclear exosome targeting complex (NEXT) consisting of the RNA helicase MTR4, the zinc-knuckle scaffold ZCCHC8, and the RNA binding protein RBM7. Here, we report that in addition to its known RNA substrates, ZCCHC8 is required for the targeted degradation of pervasive transcripts produced at CTCF binding sites, open chromatin regions, promoters, promoter flanking regions, and transcription factor binding sites. Additionally, we report that a significant number of RIKEN cDNAs and predicted genes display the hallmarks of PROMPTs and are also substrates for ZCCHC8 and/or NEXT complex regulation suggesting these are unlikely to be functional genes. Our results suggest that ZCCHC8 and/or the NEXT complex may play a larger role in the global regulation of pervasive transcription than previously reported.Competing Interest StatementThe authors have declared no competing interest.