Main Menu (Mobile)- Block

Main Menu - Block

Biblio

Export 3926 results:
Author Title [ Type(Desc)] Year
Journal Article
Chen S, Liu Y, Wang Z, Colonell J, Liu LD, Hou H, Tien N-W, Wang T, Harris T, Druckmann S et al..  2023.  Brain-wide neural activity underlying memory-guided movement. bioRxiv.
Chen S, Liu Y, Wang ZAiden, Colonell J, Liu LD, Hou H, Tien N-W, Wang T, Harris T, Druckmann S et al..  2024.  Brain-wide neural activity underlying memory-guided movement.. Cell. 187(3):676-691.e16.
Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F, Portugues R.  2012.  Brain-wide neuronal dynamics during motor adaptation in zebrafish.. Nature. 485(7399):471-7.
Chen X, Mu Y, Hu Y, Kuan AT, Nikitchenko M, Randlett O, Chen AB, Gavornik JP, Sompolinsky H, Engert F et al..  2018.  Brain-wide organization of neuronal activity and convergent sensorimotor transformations in larval zebrafish.. Neuron. 100(4):876-890.e5.
Mu Y, Narayan S, Mensh BD, Ahrens MB.  2020.  Brain-wide, scale-wide physiology underlying behavioral flexibility in zebrafish.. Current Opinion in Neurobiology. 64:151-160.
Xie L, Dong P, Qi Y, Hsieh T-HS, English BP, Jung S, Chen X, De Marzio M, Casellas R, Chang HY et al..  2022.  BRD2 compartmentalizes the accessible genome.. Nature Genetics. 54(4):481-491.
Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL.  1991.  Breaking the diffraction barrier: optical microscopy on a nanometric scale.. Science. 251(5000):1468-70.
Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL.  1991.  Breaking the diffraction barrier: optical microscopy on a nanometric scale. (With commentary). Science. 251(5000):1468-70.
Gao L, R Cooks G, Ouyang Z.  2008.  Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface.. Analytical Chemistry. 80(11):4026-32.
Si K, Fiolka R, Cui M.  2012.  Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy.. Scientific Reports. 2:748.
Schnoes AM, Green NH, Nguyen TA, Vale RD, Goodwin SS, Behrman SL.  2024.  Bridging gaps in traditional research training with iBiology Courses.. PLoS Biology. 22(1):e3002458.
Lippincott-Schwartz J.  2011.  Bridging structure and process in developmental biology through new imaging technologies.. Developmental cell. 21(1):5-10.
Zarowny L, Aggarwal A, Rutten VMS, Kolb I, Patel R, Huang H-Y, Chang Y-F, Phan T, Kanyo R, Ahrens MB et al..  2020.  Bright and high-performance genetically encoded Ca indicator based on mNeonGreen fluorescent protein.. ACS Sensors.
Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, Huang Y-C, Campagnola L, Seeman SC, Yu J et al..  2019.  Bright and photostable chemigenetic indicators for extended in vivo voltage imaging.. Science. 365(6454):699-704.
McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL.  2009.  A bright and photostable photoconvertible fluorescent protein.. Nature Methods. 6(2):131-3.
Deo C, Abdelfattah AS, Bhargava HK, Berro AJ, Falco N, Moeyaert B, Chupanova M, Lavis LD, Schreiter ER.  2020.  Bright and tunable far-red chemigenetic indicators.. bioRxiv.
Lavis LD, Raines RT.  2014.  Bright building blocks for chemical biology.. ACS Chemical Biology. 9(4):855-66.
Chu J, Oh Y, Sens A, Ataie N, Dana H, Macklin JJ, Laviv T, Welf ES, Dean KM, Zhang F et al..  2016.  A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo.. Nature Biotechnology. 34(7):760-7.
Lavis LD, Raines RT.  2008.  Bright ideas for chemical biology.. ACS Chemical Biology. 3:142-55.
Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV.  2010.  Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells.. Journal of the American Chemical Society. 132(18):6481-91.
Lavis LD, Grimm JB, English BP, Choi H, Muthusamy AK, Mehl BP, Dong P, Brown TA, Lippincott-Schwartz J, Liu Z et al..  2016.  Bright photoactivatable fluorophores for single-molecule imaging.. Nature Methods. 13(12):985-8.
Zhou X, Riddiford LM.  2002.  Broad specifies pupal development and mediates the ’status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca.. Development . 129(9):2259-69.
Ladurner AG, Inouye C, Jain R, Tjian R.  2003.  Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries.. Molecular Cell. 11(2):365-76.
Kenworthy CA, Haque N, Liou S-H, Chandris P, Wong V, Dziuba P, Lavis LD, Liu W-L, Singer RH, Coleman RA.  2022.  Bromodomains regulate dynamic targeting of the PBAF chromatin remodeling complex to chromatin hubs.. Biophysical Journal. 121(9):1738-1752.
Scott JA, Williams DW, Truman JW.  2011.  The BTB/POZ zinc finger protein Broad-Z3 promotes dendritic outgrowth during metamorphic remodeling of the peripheral stretch receptor dbd.. Neural Development. 6:39.