Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 2991-3000 of 3920 results
Looger Lab
01/01/12 | Running in reverse: rhodopsins sense voltage.
Looger LL
Nature Methods. 2012 Jan;9(1):43-4. doi: 10.1038/nmeth.1817
07/06/07 | S-nitrosylation-induced conformational change in blackfin tuna myoglobin.
Schreiter ER, Rodríguez MM, Weichsel A, Montfort WR, Bonaventura J
Journal of Biological Chemistry. 2007 Jul 6;282(27):19773-80. doi: 10.1074/jbc.M701363200

S-nitrosylation is a post-translational protein modification that can alter the function of a variety of proteins. Despite the growing wealth of information that this modification may have important functional consequences, little is known about the structure of the moiety or its effect on protein tertiary structure. Here we report high-resolution x-ray crystal structures of S-nitrosylated and unmodified blackfin tuna myoglobin, which demonstrate that in vitro S-nitrosylation of this protein at the surface-exposed Cys-10 directly causes a reversible conformational change by "wedging" apart a helix and loop. Furthermore, we have demonstrated in solution and in a single crystal that reduction of the S-nitrosylated myoglobin with dithionite results in NO cleavage from the sulfur of Cys-10 and rebinding to the reduced heme iron, showing the reversibility of both the modification and the conformational changes. Finally, we report the 0.95-A structure of ferrous nitrosyl myoglobin, which provides an accurate structural view of the NO coordination geometry in the context of a globin heme pocket.

View Publication Page
05/31/24 | Salivary gland developmental mechanics
Morales EA, Wang S
Current Topics in Developmental Biology:. doi: 10.1016/bs.ctdb.2024.05.002

The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.

View Publication Page
05/07/24 | Salivary Gland Tissue Recombination Can Modify Cell Fate
Sekiguchi R, Martin D, Doyle AD, Wang S, Genomics and Computational Biology Core , Yamada KM
J Dent Res. 2024 May 07:220345241247484. doi: 10.1177/00220345241247484

Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate the roles of tissue interactions in cellular differentiation, we performed single-cell RNA sequencing and imaging analyses on recombined tissues, where mesenchyme and epithelium were switched ex vivo between two types of embryonic mouse salivary glands: the parotid gland (a serous gland) and the submandibular gland (a predominantly mucous gland). We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. The parotid epithelium recombined with submandibular mesenchyme began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be modified in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.

View Publication Page
12/07/15 | Sample complexity of learning Mahalanobis distance metrics.
Verma N, Branson KM
Neural Information Processing Systems Conference. 2015-Jul ;28:

Metric learning seeks a transformation of the feature space that enhances prediction quality for a given task. In this work we provide PAC-style sample complexity rates for supervised metric learning. We give matching lower- and upper-bounds showing that sample complexity scales with the representation dimension when no assumptions are made about the underlying data distribution. In addition, by leveraging the structure of the data distribution, we provide rates fine-tuned to a specific notion of the intrinsic complexity of a given dataset, allowing us to relax the dependence on representation dimension. We show both theoretically and empirically that augmenting the metric learning optimization criterion with a simple norm-based regularization is important and can help adapt to a dataset’s intrinsic complexity yielding better generalization, thus partly explaining the empirical success of similar regularizations reported in previous works.

View Publication Page
Cardona Lab
04/12/14 | Sample drift correction following 4D confocal time-lapse imaging.
Parslow A, Cardona A, Bryson-Richardson RJ
Journal of Visualized Experiments: JoVE. 2014 Apr 12(86):. doi: 10.3791/51086

The generation of four-dimensional (4D) confocal datasets; consisting of 3D image sequences over time; provides an excellent methodology to capture cellular behaviors involved in developmental processes.  The ability to track and follow cell movements is limited by sample movements that occur due to drift of the sample or, in some cases, growth during image acquisition. Tracking cells in datasets affected by drift and/or growth will incorporate these movements into any analysis of cell position. This may result in the apparent movement of static structures within the sample. Therefore prior to cell tracking, any sample drift should be corrected. Using the open source Fiji distribution (1)  of ImageJ (2,3) and the incorporated LOCI tools (4), we developed the Correct 3D drift plug-in to remove erroneous sample movement in confocal datasets. This protocol effectively compensates for sample translation or alterations in focal position by utilizing phase correlation to register each time-point of a four-dimensional confocal datasets while maintaining the ability to visualize and measure cell movements over extended time-lapse experiments.

View Publication Page
05/04/16 | Sampling Requirements for Stable Autoregressive Estimation
Abbas Kazemipour , Sina Miran , Piya Pal , Behtash Babadi , Min Wu
CoRR;abs/1605.01436:

We consider the problem of estimating the parameters of a linear autoregressive model with sub-Gaussian innovations from a limited sequence of consecutive observations. Assuming that the parameters are compressible, we analyze the performance of the ℓ1-regularized least squares as well as a greedy estimator of the parameters and characterize the sampling trade-offs required for stable recovery in the non-asymptotic regime. Our results extend those of compressed sensing for linear models where the covariates are i.i.d. and independent of the observation history to autoregressive processes with highly inter-dependent covariates. We also derive sufficient conditions on the sparsity level that guarantee the minimax optimality of the ℓ1-regularized least squares estimate. Applying these techniques to simulated data as well as real-world datasets from crude oil prices and traffic speed data confirm our predicted theoretical performance gains in terms of estimation accuracy and model selection.

View Publication Page
08/17/16 | Satb2 stations neurons along reflex arcs.
Hantman AW, Kaltschmidt JA
Neuron. 2016 Aug 17;91(4):711-3. doi: 10.1016/j.neuron.2016.08.005

The nociceptive flexor withdrawal reflex has an august place in the history of neuroscience. In this issue of Neuron, Hilde et al. (2016) advance our understanding of this reflex by characterizing the molecular identity and circuit connectivity of component interneurons. They assess how a DNA-binding factor Satb2 controls cell position, molecular identity, pre-and postsynaptic targeting, and function of a population of inhibitory sensory relay interneurons that serve to integrate both proprioceptive and nociceptive afferent information.

The nociceptive flexor withdrawal reflex has an august place in the history of neuroscience. In this issue of Neuron, Hilde et al. (2016) advance our understanding of this reflex by characterizing the molecular identity and circuit connectivity of component interneurons. They assess how a DNA-binding factor Satb2 controls cell position, molecular identity, pre-and postsynaptic targeting, and function of a population of inhibitory sensory relay interneurons that serve to integrate both proprioceptive and nociceptive afferent information.

View Publication Page
10/01/13 | Scaling laws of associative memory retrieval.
Romani S, Pinkoviezky I, Rubin A, Tsodyks M
Neural Computation. 2013 Oct;25(10):2523-44. doi: 10.1162/NECO_a_00499

Most people have great difficulty in recalling unrelated items. For example, in free recall experiments, lists of more than a few randomly selected words cannot be accurately repeated. Here we introduce a phenomenological model of memory retrieval inspired by theories of neuronal population coding of information. The model predicts nontrivial scaling behaviors for the mean and standard deviation of the number of recalled words for lists of increasing length. Our results suggest that associative information retrieval is a dominating factor that limits the number of recalled items.

View Publication Page
01/01/10 | Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection.
Mertz J, Kim J
Journal of Biomedical Optics. 2010 Jan-Feb;15(1):016027. doi: 10.1117/1.3324890

It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.

View Publication Page