Filter
Associated Lab
- Ahrens Lab (2) Apply Ahrens Lab filter
- Aso Lab (1) Apply Aso Lab filter
- Betzig Lab (7) Apply Betzig Lab filter
- Bock Lab (1) Apply Bock Lab filter
- Branson Lab (1) Apply Branson Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Dudman Lab (1) Apply Dudman Lab filter
- Fetter Lab (3) Apply Fetter Lab filter
- Harris Lab (59) Apply Harris Lab filter
- Hess Lab (4) Apply Hess Lab filter
- Jayaraman Lab (3) Apply Jayaraman Lab filter
- Ji Lab (1) Apply Ji Lab filter
- Keller Lab (1) Apply Keller Lab filter
- Lavis Lab (3) Apply Lavis Lab filter
- Lee (Albert) Lab (7) Apply Lee (Albert) Lab filter
- Leonardo Lab (1) Apply Leonardo Lab filter
- Lippincott-Schwartz Lab (1) Apply Lippincott-Schwartz Lab filter
- Looger Lab (7) Apply Looger Lab filter
- Magee Lab (2) Apply Magee Lab filter
- Pachitariu Lab (3) Apply Pachitariu Lab filter
- Rubin Lab (3) Apply Rubin Lab filter
- Saalfeld Lab (3) Apply Saalfeld Lab filter
- Scheffer Lab (1) Apply Scheffer Lab filter
- Schreiter Lab (4) Apply Schreiter Lab filter
- Singer Lab (2) Apply Singer Lab filter
- Spruston Lab (4) Apply Spruston Lab filter
- Svoboda Lab (6) Apply Svoboda Lab filter
- Tjian Lab (1) Apply Tjian Lab filter
- Zlatic Lab (1) Apply Zlatic Lab filter
Associated Project Team
- Fly Functional Connectome (1) Apply Fly Functional Connectome filter
- Fly Olympiad (1) Apply Fly Olympiad filter
- FlyEM (1) Apply FlyEM filter
- FlyLight (1) Apply FlyLight filter
- GENIE (5) Apply GENIE filter
- MouseLight (1) Apply MouseLight filter
- Tool Translation Team (T3) (1) Apply Tool Translation Team (T3) filter
- Transcription Imaging (3) Apply Transcription Imaging filter
Publication Date
- 2024 (4) Apply 2024 filter
- 2023 (6) Apply 2023 filter
- 2022 (1) Apply 2022 filter
- 2021 (2) Apply 2021 filter
- 2020 (1) Apply 2020 filter
- 2019 (4) Apply 2019 filter
- 2018 (5) Apply 2018 filter
- 2017 (5) Apply 2017 filter
- 2016 (5) Apply 2016 filter
- 2015 (7) Apply 2015 filter
- 2014 (2) Apply 2014 filter
- 2013 (3) Apply 2013 filter
- 2012 (3) Apply 2012 filter
- 2010 (1) Apply 2010 filter
- 2009 (1) Apply 2009 filter
- 2008 (1) Apply 2008 filter
- 1996 (1) Apply 1996 filter
- 1994 (3) Apply 1994 filter
- 1993 (1) Apply 1993 filter
- 1992 (1) Apply 1992 filter
- 1991 (2) Apply 1991 filter
Type of Publication
59 Publications
Showing 1-10 of 59 resultsCognition is produced by the continuous interactions between many regions across the brain, but has typically been studied one brain region at a time. How signals in different regions coordinate to achieve a single coherent action remains unclear. Here, we address this question by characterizing the simultaneous interactions between up to 20 brain regions across the brain (10 targeted regions per hemisphere), of rats performing the “Poisson Clicks” task, a decision-making task that demands the gradual accumulation of momentary evidence. Using 8 Neuropixels probes in each animal, we recorded simultaneously in prefrontal cortex, striatum, motor cortex, hippocampus, amygdala, and thalamus. To assess decision-related interactions between regions, we quantified correlations of each region’s “decision variable”: moment-to-moment co-fluctuations along the axis in neural state space that best predicts the upcoming choice. This revealed a network of strongly correlated brain regions that include the dorsomedial frontal cortex (dmFC), anterior dorsal striatum (ADS), and primary motor cortex (M1), whose decision variables also led the rest of the brain. If coordinated activity within this subnetwork reflects an ongoing evidence accumulation process, these correlations should cease at the time of decision commitment. We therefore compared correlations before versus after “nTc”, a recently reported estimator for the time of internal decision commitment. We found that correlations in the decision variables between different brain regions decayed to near-zero after nTc. Additionally, we found that choice-predictive activity steadily increased over time before nTc, but abruptly stopped growing at nTc, consistent with an evidence accumulation process that has stopped evolving at that time. Assessing nTc from the activity of individual regions revealed that nTc could be reliably detected earlier in M1 than other regions. These results show that evidence accumulation involves coordination within a network of frontal cortical and striatal regions, and suggests that termination of this process may initiate in M1.
Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. Advances in high-density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here, we propose a neuron tracking method that can identify the same cells independent of firing statistics, that are used by most existing methods. Our method is based on between-day non-rigid alignment of spike-sorted clusters. We verified the same cell identity in mice using measured visual receptive fields. This method succeeds on datasets separated from 1 to 47 days, with an 84% average recovery rate.
To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device samples neuronal activity at ultra-high spatial density ( 10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron’s electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to 3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.
Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.
The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily drawing from hippocampal memory representations of people, events, and places, including maplike representations of familiar environments. However, whether representations in such "cognitive maps" can be volitionally accessed is unknown. We developed a brain-machine interface to test whether rats can do so by controlling their hippocampal activity in a flexible, goal-directed, and model-based manner. We found that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual reality arena solely by activating and sustaining appropriate hippocampal representations of remote places. This provides insight into the mechanisms underlying episodic memory recall, mental simulation and planning, and imagination and opens up possibilities for high-level neural prosthetics that use hippocampal representations.
Real-time neural signal processing is essential for brain-machine interfaces and closed-loop neuronal perturbations. However, most existing applications sacrifice cell-specific identity and temporal spiking information for speed. We developed a hybrid hardware-software system that utilizes a Field Programmable Gate Array (FPGA) chip to acquire and process data in parallel, enabling individual spikes from many simultaneously recorded neurons to be assigned single-neuron identities with 1-millisecond latency. The FPGA assigns labels, validated with ground-truth data, by comparing multichannel spike waveforms from tetrode or silicon probe recordings to a spike-sorted model generated offline in software. This platform allowed us to rapidly inactivate a region in vivo based on spikes from an upstream neuron before these spikes could excite the downstream region. Furthermore, we could decode animal location within 3 ms using data from a population of individual hippocampal neurons. These results demonstrate our system’s suitability for a broad spectrum of research and clinical applications.
To study the neural basis of behavior, we require methods to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology is a principal method for achieving this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To overcome these limitations, we developed a silicon probe with significantly smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device measures neuronal activity at ultra-high densities (>1300 sites per mm, 10 times higher than previous probes), with 6 µm center-to-center spacing and low noise. This device effectively comprises an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We introduce a new spike sorting algorithm optimized for these probes and use it to find that the yield of visually-responsive neurons in recordings from mouse visual cortex improves ∼3-fold. Recordings across multiple brain regions and four species revealed a subset of unexpectedly small extracellular action potentials not previously reported. Further experiments determined that, in visual cortex, these do not correspond to major subclasses of interneurons and instead likely reflect recordings from axons. Finally, using ground-truth identification of cortical inhibitory cell types with optotagging, we found that cell type was discriminable with approximately 75% success among three types, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, sampling bias, and cell type classification.
The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily drawing from hippocampal memory representations of people, events, and places, including the hippocampus’ map-like representations of familiar environments. However, whether the representations in such “cognitive maps” can be volitionally and selectively accessed is unknown. We developed a brain-machine interface to test if rats could control their hippocampal activity in a flexible, goal-directed, model-based manner. We show that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual reality arena solely by activating and sustaining appropriate hippocampal representations of remote places. This should provide insight into the mechanisms underlying episodic memory recall, mental simulation/planning, and imagination, and open up possibilities for high-level neural prosthetics utilizing hippocampal representations.
Behavior requires neural activity across the brain, but most experiments probe neurons in a single area at a time. Here we used multiple Neuropixels probes to record neural activity simultaneously in brain-wide circuits, in mice performing a memory-guided directional licking task. We targeted brain areas that form multi-regional loops with anterior lateral motor cortex (ALM), a key circuit node mediating the behavior. Neurons encoding sensory stimuli, choice, and actions were distributed across the brain. However, in addition to ALM, coding of choice was concentrated in subcortical areas receiving input from ALM, in an ALM-dependent manner. Choice signals were first detected in ALM and the midbrain, followed by the thalamus, and other brain areas. At the time of movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.
High-density, integrated silicon electrodes have begun to transform systems neuroscience, by enabling large-scale neural population recordings with single cell resolution. Existing technologies, however, have provided limited functionality in nonhuman primate species such as macaques, which offer close models of human cognition and behavior. Here, we report the design, fabrication, and performance of Neuropixels 1.0-NHP, a high channel count linear electrode array designed to enable large-scale simultaneous recording in superficial and deep structures within the macaque or other large animal brain. These devices were fabricated in two versions: 4416 electrodes along a 45 mm shank, and 2496 along a 25 mm shank. For both versions, users can programmably select 384 channels, enabling simultaneous multi-area recording with a single probe. We demonstrate recording from over 3000 single neurons within a session, and simultaneous recordings from over 1000 neurons using multiple probes. This technology represents a significant increase in recording access and scalability relative to existing technologies, and enables new classes of experiments involving fine-grained electrophysiological characterization of brain areas, functional connectivity between cells, and simultaneous brain-wide recording at scale.