Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3947 Publications

Showing 3001-3010 of 3947 results
11/10/22 | Robotic Multi-Probe-Single-Actuator Inchworm Neural Microdrive
Smith R, Kolb I, Tanaka S, Lee A, Harris T, Barbic M
eLife. 2022 Nov 10:. doi: 10.7554/eLife.71876

Electrophysiology is one of the major experimental techniques used in neuroscience. The favorable spatial and temporal resolution as well as the increasingly larger site counts of brain recording electrodes contribute to the popularity and importance of electrophysiology in neuroscience. Such electrodes are typically mechanically placed in the brain to perform acute or chronic freely moving animal measurements. The micro positioners currently used for such tasks employ a single translator per independent probe being placed into the targeted brain region, leading to significant size and weight restrictions. To overcome this limitation, we have developed a miniature robotic multi-probe neural microdrive that utilizes novel phase-change-material-filled resistive heater micro-grippers. The microscopic dimensions, gentle gripping action, independent electronic actuation control, and high packing density of the grippers allow for micrometer-precision independent positioning of multiple arbitrarily shaped parallel neural electrodes with only a single piezo actuator in an inchworm motor configuration. This multi-probe-single-actuator design allows for significant size and weight reduction, as well as remote control and potential automation of the microdrive. We demonstrate accurate placement of multiple independent recording electrodes into the CA1 region of the rat hippocampus in vivo in acute and chronic settings. Thus, our robotic neural microdrive technology is applicable towards basic neuroscience and clinical studies, as well as other multi-probe or multi-sensor micro-positioning applications.

View Publication Page
11/08/22 | Robust cell identity specifications through transitions in the collective state of growing developmental systems
Stanoev A, Koseska A
Current Opinion in Systems Biology. 2022 Nov 08;31:100437. doi: 10.1016/j.coisb.2022.100437

Mammalian development is characterized with transitions from homogeneous populations of precursor to heterogeneous population of specified cells. We review here the main dynamical mechanisms through which such transitions are conceptualized, and discuss that the differentiation timing, robust cell-type proportions and recovery upon perturbation are emergent property of proliferating and communicating cell populations. We argue that studying developmental systems using transitions in collective system states is necessary to describe observed experimental features, and propose additionally the basis of a novel analytical method to deduce the relationship between single-cell dynamics and the collective, symmetry-broken states in cellular populations.

View Publication Page
04/01/15 | Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms
Eve Marder , Marie L Goeritz , Adriane G Otopalik
Current Opinion in Neurobiology. 2015 Apr 1;31:156-163. doi: https://doi.org/10.1016/j.conb.2014.10.012

Small central pattern generating circuits found in invertebrates have significant advantages for the study of the circuit mechanisms that generate brain rhythms. Experimental and computational studies of small oscillatory circuits reveal that similar rhythms can arise from disparate mechanisms. Animal-to-animal variation in the properties of single neurons and synapses may underly robust circuit performance, and can be revealed by perturbations. Neuromodulation can produce altered circuit performance but also ensure reliable circuit function.

View Publication Page
05/02/16 | Robust estimation of self-exciting point process models with application to neuronal modeling.
Abbas Kazemipour , Min Wu , Behtash Babadi
CoRR;abs/1507.03955:

We consider the problem of estimating discrete selfexciting point process models from limited binary observations, where the history of the process serves as the covariate. We analyze the performance of two classes of estimators, namely the `1-regularized maximum likelihood and greedy estimators, for a canonical self-exciting point process and characterize the sampling tradeoffs required for stable recovery in the non-asymptotic regime. Our results extend those of compressed sensing for linear and generalized linear models with i.i.d. covariates to point processes with highly inter-dependent covariates. We further provide simulation studies as well as application to real spiking data from mouse’s lateral geniculate nucleus and ferret’s retinal ganglion cells which agree with our theoretical predictions.

View Publication Page
01/04/18 | Robust model-based analysis of single-particle tracking experiments with Spot-On.
Hansen AS, Woringer M, Grimm JB, Lavis LD, Tjian R, Darzacq X
eLife. 2018 Jan 04;7:. doi: 10.7554/eLife.33125

Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants.

View Publication Page
Svoboda LabDruckmann Lab
04/13/16 | Robust neuronal dynamics in premotor cortex during motor planning.
Li N, Daie K, Svoboda K, Druckmann S
Nature. 2016 Apr 13:. doi: 10.1038/nature17643

Neural activity maintains representations that bridge past and future events, often over many seconds. Network models can produce persistent and ramping activity, but the positive feedback that is critical for these slow dynamics can cause sensitivity to perturbations. Here we use electrophysiology and optogenetic perturbations in the mouse premotor cortex to probe the robustness of persistent neural representations during motor planning. We show that preparatory activity is remarkably robust to large-scale unilateral silencing: detailed neural dynamics that drive specific future movements were quickly and selectively restored by the network. Selectivity did not recover after bilateral silencing of the premotor cortex. Perturbations to one hemisphere are thus corrected by information from the other hemisphere. Corpus callosum bisections demonstrated that premotor cortex hemispheres can maintain preparatory activity independently. Redundancy across selectively coupled modules, as we observed in the premotor cortex, is a hallmark of robust control systems. Network models incorporating these principles show robustness that is consistent with data.

View Publication Page
Saalfeld LabFly Functional Connectome
06/15/16 | Robust registration of calcium images by learned contrast synthesis.
Bogovic JA, Hanslovsky P, Wong AM, Saalfeld S
IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro. 2016 Jun 15:. doi: 10.1109/ISBI.2016.7493463

Multi-modal image registration is a challenging task that is vital to fuse complementary signals for subsequent analyses. Despite much research into cost functions addressing this challenge, there exist cases in which these are ineffective. In this work, we show that (1) this is true for the registration of in-vivo Drosophila brain volumes visualizing genetically encoded calcium indicators to an nc82 atlas and (2) that machine learning based contrast synthesis can yield improvements. More specifically, the number of subjects for which the registration outright failed was greatly reduced (from 40% to 15%) by using a synthesized image.

View Publication Page
06/27/17 | Robustness of spike deconvolution for calcium imaging of neural spiking.
Pachitariu M, Stringer C, Harris KD
bioRxiv. 2017 Jun 27:156786. doi: https://doi.org/10.1101/156786

Calcium imaging is a powerful method to record the activity of neural populations, but inferring spike times from calcium signals is a challenging problem. We compared multiple approaches using multiple datasets with ground truth electrophysiology, and found that simple non-negative deconvolution (NND) outperformed all other algorithms. We introduce a novel benchmark applicable to recordings without electrophysiological ground truth, based on the correlation of responses to two stimulus repeats, and used this to show that unconstrained NND also outperformed the other algorithms when run on 'zoomed out' datasets of ~10,000 cell recordings. Finally, we show that NND-based methods match the performance of a supervised method based on convolutional neural networks, while avoiding some of the biases of such methods, and at much faster running times. We therefore recommend that spikes be inferred from calcium traces using simple NND, due to its simplicity, efficiency and accuracy.

View Publication Page
08/06/18 | Robustness of spike deconvolution for neuronal calcium imaging.
Pachitariu M, Stringer C, Harris KD
The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2018 Aug 06;38(37):7976-85. doi: 10.1523/JNEUROSCI.3339-17.2018

Calcium imaging is a powerful method to record the activity of neural populations in many species, but inferring spike times from calcium signals is a challenging problem. We compared multiple approaches using multiple datasets with ground truth electrophysiology, and found that simple non-negative deconvolution (NND) outperformed all other algorithms on out-of-sample test data. We introduce a novel benchmark applicable to recordings without electrophysiological ground truth, based on the correlation of responses to two stimulus repeats, and used this to show that unconstrained NND also outperformed the other algorithms when run on "zoomed out" datasets of ∼10,000 cell recordings from the visual cortex of mice of either sex. Finally, we show that NND-based methods match the performance of a supervised method based on convolutional neural networks, while avoiding some of the biases of such methods, and at much faster running times. We therefore recommend that spikes be inferred from calcium traces using simple NND, due to its simplicity, efficiency and accuracy.The experimental method that currently allows for recordings of the largest numbers of cells simultaneously is two-photon calcium imaging. However, use of this powerful method requires that neuronal firing times be inferred correctly from the large resulting datasets. Previous studies have claimed that complex supervised learning algorithms outperform simple deconvolution methods at this task. Unfortunately, these studies suffered from several problems and biases. When we repeated the analysis, using the same data and correcting these problems, we found that simpler spike inference methods perform better. Even more importantly, we found that supervised learning methods can introduce artifactual structure into spike trains, that can in turn lead to erroneous scientific conclusions. Of the algorithms we evaluated, we found that an extremely simple method performed best in all circumstances tested, was much faster to run, and was insensitive to parameter choices, making incorrect scientific conclusions much less likely.

View Publication Page
Looger Lab
12/04/14 | Role of adaptor TrfA and ClpPC in controlling levels of SsrA-tagged proteins and antitoxins in staphylococcus aureus.
Donegan NP, Marvin JS, Cheung AL
Journal of Bacteriology. 2014 Dec 1;196(23):4140-51. doi: 10.1128/JB.02222-14

Staphylococcus aureus responds to changing extracellular environments in part by adjusting its proteome through alterations of transcriptional priorities and selective degradation of the preexisting pool of proteins. In Bacillus subtilis, the proteolytic adaptor protein MecA has been shown to play a role in assisting with the proteolytic degradation of proteins involved in competence and the oxidative stress response. However, the targets of TrfA, the MecA homolog in S. aureus, have not been well characterized. In this work, we investigated how TrfA assists chaperones and proteases to regulate the proteolysis of several classes of proteins in S. aureus. By fusing the last 3 amino acids of the SsrA degradation tag to Venus, a rapidly folding yellow fluorescent protein, we obtained both fluorescence-based and Western blot assay-based evidence that TrfA and ClpCP are the adaptor and protease, respectively, responsible for the degradation of the SsrA-tagged protein in S. aureus. Notably, the impact of TrfA on degradation was most prominent during late log phase and early stationary phase, due in part to a combination of transcriptional regulation and proteolytic degradation of TrfA by ClpCP. We also characterized the temporal transcriptional regulation governing TrfA activity, wherein Spx, a redox-sensitive transcriptional regulator degraded by ClpXP, activates trfA transcription while repressing its own promoter. Finally, the scope of TrfA-mediated proteolysis was expanded by identifying TrfA as the adaptor that works with ClpCP to degrade antitoxins in S. aureus. Together, these results indicate that the adaptor TrfA adds temporal nuance to protein degradation by ClpCP in S. aureus.

View Publication Page