Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Stern Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

153 Publications

Showing 141-150 of 153 results
09/01/08 | The loci of evolution: how predictable is genetic evolution?
Stern DL, Orgogozo V
Evolution. 2008 Sep;62(9):2155-77. doi: 10.1111/j.1558-5646.2008.00450.x

Is genetic evolution predictable? Evolutionary developmental biologists have argued that, at least for morphological traits, the answer is a resounding yes. Most mutations causing morphological variation are expected to reside in the cis-regulatory, rather than the coding, regions of developmental genes. This "cis-regulatory hypothesis" has recently come under attack. In this review, we first describe and critique the arguments that have been proposed in support of the cis-regulatory hypothesis. We then test the empirical support for the cis-regulatory hypothesis with a comprehensive survey of mutations responsible for phenotypic evolution in multicellular organisms. Cis-regulatory mutations currently represent approximately 22% of 331 identified genetic changes although the number of cis-regulatory changes published annually is rapidly increasing. Above the species level, cis-regulatory mutations altering morphology are more common than coding changes. Also, above the species level cis-regulatory mutations predominate for genes not involved in terminal differentiation. These patterns imply that the simple question "Do coding or cis-regulatory mutations cause more phenotypic evolution?" hides more interesting phenomena. Evolution in different kinds of populations and over different durations may result in selection of different kinds of mutations. Predicting the genetic basis of evolution requires a comprehensive synthesis of molecular developmental biology and population genetics.

View Publication Page
04/01/05 | The origin of a mutualism: a morphological trait promoting the evolution of ant-aphid mutualisms.
Shingleton AW, Stern DL, Foster WA
Evolution. 2005 Apr;59(4):921-6

Mutualisms are mutually beneficial interactions between species and are fundamentally important at all levels of biological organization. It is not clear, however, why one species participates in a particular mutualism whereas another does not. Here we show that pre-existing traits can dispose particular species to evolve a mutualistic interaction. Combining morphological, ecological, and behavioral data in a comparative analysis, we show that resource use in Chaitophorus aphids (Hemiptera: Aphididae) modulates the origin of their mutualism with ants. We demonstrate that aphid species that feed on deeper phloem elements have longer mouthparts, that this inhibits their ability to withdraw their mouthparts and escape predators and that, consequently, this increases their need for protection by mutualist ants.

View Publication Page
07/01/06 | The pea aphid, Acyrthosiphon pisum: an emerging genomic model system for ecological, developmental and evolutionary studies.
Brisson JA, Stern DL
Bioessays. 2006 Jul;28(7):747-55. doi: 10.1002/bies.20436

Aphids display an abundance of adaptations that are not easily studied in existing model systems. Here we review the biology of a new genomic model system, the pea aphid, Acyrthosiphon pisum. We then discuss several phenomena that are particularly accessible to study in the pea aphid: the developmental genetic basis of polyphenisms, aphid-bacterial symbioses, the genetics of adaptation and mechanisms of virus transmission. The pea aphid can be maintained in the laboratory and natural populations can be studied in the field. These properties allow controlled experiments to be performed on problems of direct relevance to natural aphid populations. Combined with new genomic approaches, the pea aphid is poised to become an important model system for understanding the molecular and developmental basis of many ecologically and evolutionarily relevant problems.

View Publication Page
01/07/16 | The soft touch: low-affinity transcription factor binding sites in development and evolution.
Crocker J, Preger-Ben Noon E, Stern DL
Current Topics in Developmental Biology. 2016 Jan 07:. doi: 10.1016/bs.ctdb.2015.11.018

Transcription factor proteins regulate gene expression by binding to specific DNA regions. Most studies of transcription factor binding sites have focused on the highest affinity sites for each factor. There is abundant evidence, however, that binding sites with a range of affinities, including very low affinities, are critical to gene regulation. Here, we present the theoretical and experimental evidence for the importance of low-affinity sites in gene regulation and development. We also discuss the implications of the widespread use of low-affinity sites in eukaryotic genomes for robustness, precision, specificity, and evolution of gene regulation.

View Publication Page
12/19/13 | The structure and evolution of cis-regulatory regions: the shavenbaby story.
Stern DL, Frankel N
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2013 Dec 19;368(1632):20130028. doi: 10.1098/rstb.2013.0028

In this paper, we provide a historical account of the contribution of a single line of research to our current understanding of the structure of cis-regulatory regions and the genetic basis for morphological evolution. We revisit the experiments that shed light on the evolution of larval cuticular patterns within the genus Drosophila and the evolution and structure of the shavenbaby gene. We describe the experiments that led to the discovery that multiple genetic changes in the cis-regulatory region of shavenbaby caused the loss of dorsal cuticular hairs (quaternary trichomes) in first instar larvae of Drosophila sechellia. We also discuss the experiments that showed that the convergent loss of quaternary trichomes in D. sechellia and Drosophila ezoana was generated by parallel genetic changes in orthologous enhancers of shavenbaby. We discuss the observation that multiple shavenbaby enhancers drive overlapping patterns of expression in the embryo and that these apparently redundant enhancers ensure robust shavenbaby expression and trichome morphogenesis under stressful conditions. All together, these data, collected over 13 years, provide a fundamental case study in the fields of gene regulation and morphological evolution, and highlight the importance of prolonged, detailed studies of single genes.

View Publication Page
09/01/05 | The temporal requirements for insulin signaling during development in Drosophila.
Shingleton AW, Das J, Vinicius L, Stern DL
PLoS Biol. 2005 Sep;3(9):e289. doi: 10.1371/journal.pbio.0030289

Recent studies have indicated that the insulin-signaling pathway controls body and organ size in Drosophila, and most metazoans, by signaling nutritional conditions to the growing organs. The temporal requirements for insulin signaling during development are, however, unknown. Using a temperature-sensitive insulin receptor (Inr) mutation in Drosophila, we show that the developmental requirements for Inr activity are organ specific and vary in time. Early in development, before larvae reach the "critical size" (the size at which they commit to metamorphosis and can complete development without further feeding), Inr activity influences total development time but not final body and organ size. After critical size, Inr activity no longer affects total development time but does influence final body and organ size. Final body size is affected by Inr activity from critical size until pupariation, whereas final organ size is sensitive to Inr activity from critical size until early pupal development. In addition, different organs show different sensitivities to changes in Inr activity for different periods of development, implicating the insulin pathway in the control of organ allometry. The reduction in Inr activity is accompanied by a two-fold increase in free-sugar levels, similar to the effect of reduced insulin signaling in mammals. Finally, we find that varying the magnitude of Inr activity has different effects on cell size and cell number in the fly wing, providing a potential linkage between the mode of action of insulin signaling and the distinct downstream controls of cell size and number. We present a model that incorporates the effects of the insulin-signaling pathway into the Drosophila life cycle. We hypothesize that the insulin-signaling pathway controls such diverse effects as total developmental time, total body size and organ size through its effects on the rate of cell growth, and proliferation in different organs.

View Publication Page
10/15/19 | The yellow gene influences Drosophila male mating success through sex comb melanization.
Massey JH, Chung D, Siwanowicz I, Stern DL, Wittkopp PJ
eLife. 2019 Oct 15;8:. doi: 10.7554/eLife.49388

males perform a series of courtship behaviors that, when successful, result in copulation with a female. For over a century, mutations in the gene, named for its effects on pigmentation, have been known to reduce male mating success. Prior work has suggested that influences mating behavior through effects on wing extension, song, and/or courtship vigor. Here, we rule out these explanations, as well as effects on the nervous system more generally, and find instead that the effects of on male mating success are mediated by its effects on pigmentation of male-specific leg structures called sex combs. Loss of expression in these modified bristles reduces their melanization, which changes their structure and causes difficulty grasping females prior to copulation. These data illustrate why the mechanical properties of anatomy, not just neural circuitry, must be considered to fully understand the development and evolution of behavior.

View Publication Page
07/01/08 | Tinker where the tinkering's good.
Rockman MV, Stern DL
Trends Genet. 2008 Jul;24(7):317-9. doi: 10.1016/j.tig.2008.04.003

Do general principles govern the genetic causes of phenotypic evolution? One promising idea is that mutations in cis-regulatory regions play a predominant role in phenotypic evolution because they can alter gene activity without causing pleiotropic effects. Recent evidence that revealed the genetic basis of pigmentation pattern evolution in Drosophila santomea supports this notion. Multiple mutations that disrupt an abdominal enhancer of the pleiotropic gene tan partly explain the reduced pigmentation observed in this species.

View Publication Page

Perhaps the most valuable single set of resources for genetic studies of Drosophila melanogaster is the collection of multiply-inverted chromosomes commonly known as balancer chromosomes. Balancers prevent the recovery of recombination exchange products within genomic regions included in inversions and allow perpetual maintenance of deleterious alleles in living stocks and the execution of complex genetic crosses. Balancer chromosomes have been generated traditionally by exposing animals to ionizing radiation and screening for altered chromosome structure or for unusual marker segregation patterns. These approaches are tedious and unpredictable, and have failed to produce the desired products in some species. Here I describe transgenic tools that allow targeted chromosome rearrangements in Drosophila species. The key new resources are engineered reporter genes containing introns with yeast recombination sites and enhancers that drive fluorescent reporter genes in multiple body regions. These tools were used to generate a doubly-inverted chromosome 3R in D. simulans that serves as an effective balancer chromosome.

View Publication Page
07/01/07 | Variation in fiber number of a male-specific muscle between Drosophila species: a genetic and developmental analysis.
Orgogozo V, Muro NM, Stern DL
Evol Dev. 2007 Jul-Aug;9(4):368-77. doi: 10.1111/j.1525-142X.2007.00174.x

We characterize a newly discovered morphological difference between species of the Drosophila melanogaster subgroup. The muscle of Lawrence (MOL) contains about four to five fibers in D. melanogaster and Drosophila simulans and six to seven fibers in Drosophila mauritiana and Drosophila sechellia. The same number of nuclei per fiber is present in these species but their total number of MOL nuclei differs. This suggests that the number of muscle precursor cells has changed during evolution. Our comparison of MOL development indicates that the species difference appears during metamorphosis. We mapped the quantitative trait loci responsible for the change in muscle fiber number between D. sechellia and D. simulans to two genomic regions on chromosome 2. Our data eliminate the possibility of evolving mutations in the fruitless gene and suggest that a change in the twist might be partly responsible for this evolutionary change.

View Publication Page